ALGORITMO SPWM BASADO EN REGLAS PARA EL CONVERTIDOR MATRICIAL MONOFÁSICO (RULE-BASED SPWM ALGORITHM FOR THE SINGLE-PHASE MATRIX CONVERTER)
Resumen
En este artículo se presenta un algoritmo SPWM simplificado basado en reglas de inferencia para controlar un CM como divisor y multiplicador de frecuencia. El desarrollo del escrito es como sigue. En la sección 1 se aborda el estado del arte del CM como divisor y multiplicador de frecuencia y se propone un algoritmo SPWM simplificado para controlar el CM como variador de frecuencia. En la sección 2 se discute el principio de operación del CM como variador de frecuencia, sus modos de operación y se presenta el diseño del algoritmo SPWM simplificado. El desempeño del CM controlado con el algoritmo propuesto se corrobora mediante simulaciones en la sección 3. En la sección 4 se discute el comportamiento del algoritmo propuesto y se describen algunas ventajas respecto a otros trabajos presentados en esta área de investigación. Finalmente, en la sección 5 se presentan las conclusiones del artículo.
Palabras Clave: Algoritmo SPWM, Convertidor matricial, Reglas de decisión, Reglas de inferencia, Variador de frecuencia.
Abstract
This paper presents a simplified SPWM algorithm based on inference rules to control a CM as a frequency divider and multiplier. The development of the writing is as follows. Section 1 addresses the state of the art of the CM as a frequency divider and multiplier and proposes a simplified SPWM algorithm to control the CM as a frequency converter. Section 2 discusses the principle of operation of the CM as a frequency converter, its operating modes, and the design of the simplified SPWM algorithm is presented. The performance of the CM controlled with the proposed algorithm is corroborated by simulations in section 3. In section 4 the behavior of the proposed algorithm is discussed, and some advantages are described with respect to other works presented in this research area. Finally, section 5 presents the conclusions of the article.
Keywords: Decision Rules, Frequency Multiplier and Divider, Inference Rules, Matrix Converter, SPWM Algorithm.
Texto completo:
850-868 PDFReferencias
Barakati, S. M., Kazerani, M., & Aplevich, J. D., (2009). Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Transactions on Energy Conversion, Vol. 24, No. 3, pp. 705-713.
Brindha, B., Porselvi, T., & Ilayaraja, R., (2018). Speed control of single and three phase induction motor using full bridge cycloconverter. In 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), pp. 318-327.
Boumassata, A., Kerdoun, D., Cherfia, N., & Bennecib, N., (2013). Performance of wind energy conversion systems using a cycloconverter to control a doubly fed induction generator. Energy Procedia, Vol. 42, pp. 143-152.
Chawda, S., Ahirrao, D., Gaware, B., Kakade, P., & Kharade, P., (2014). Analysis of single phase matrix converter. J. Eng. Res. Appl, Vol. 4, No. 1, pp. 856-861.
Cobreces, S., Bueno, E., Espinosa, F., Rodríguez, F. J., & Martín, C. J., (2005). Contributions to the DC-bus voltage controller of back-to-back voltage source converters. In 31st Annual Conference of IEEE Industrial Electronics Society, IECON 2005. pp. 6-pp.
Drabek, P., Peroutka, Z., Pittermann, M., & Cedl, M., (2011). New configuration of traction converter with medium-frequency transformer using matrix converters. IEEE Transactions on Industrial Electronics, Vol. 58, No. 11, pp. 5041-5048.
Hosseini, S. H., Sharifian, M. B., Sabahi, M., Yazdanpanah, A., & Gharehpetian, G. H., (2008). Bi-directional power electronic transformer for induction heating systems. In 2008 Canadian Conference on Electrical and Computer Engineering, pp. 000347-000350.
Kumar, A., Kumar Sadhu, P., Kumar Mohanta, D., & Bharata Reddy, M. J., (2018). An effective switching algorithm for single phase matrix converter in induction heating applications. Electronics, Vol. 7, No. 8, pp 149.
Maimon, D., (2021). Electric propulsion of ships and its advantages for anchor lifting towing vessels. Annals of “Dunarea de Jos” University of Galati. Fascicle XI Shipbuilding, Vol. 44, No. 51-58.
Prakash, R., Nyekha, S., Sahu, P., Tiwari, D., (2016). SPMC as Single Phase to Single Phase Cycloconverter with SPWM using MATLAB/Simulink. International Journal of Scientific Development and Research, Vol. 1, No. 10, pp. 59-67.
Qin, Z., Wang, H., Blaabjerg, F., & Loh, P. C., (2014). Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter. In 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 203-210.
Rahman, A., (2019). Realization of single phase matrix converter using 4 controlled switches. International Journal of Engineering, Applied and Management Sciences Paradigms, Vol. 54, No. 7, pp. 1-4.
Satish, V., Konathala, S. K., & Kiran, A. U. R., (2014). Design and implementation of single phase matrix converter for cycloconverter operation. International Journal of Engineering Research & Technology (IJERT), Vol. 3, No. 1, pp. 922-927.
Shivam, S., Singh, R., Singh, R. R., & Sitharthan, R., (2020). A Review on Power Electronics and Drives in Electric Propulsion System. In IOP Conference Series: Materials Science and Engineering, Vol. 937, No. 1, p. 012050.
Szcześniak, P., Kaniewski, J., & Jarnut, M., (2015). AC–AC power electronic converters without DC energy storage: A review. Energy Conversion and Management, Vol. 92, pp. 483-497.
Tcai, A., Shin, H. U., & Lee, K. B., (2017). DC-link capacitor-current ripple reduction in DPWM-based back-to-back converters. IEEE Transactions on Industrial Electronics, Vol. 65, No.3, pp.1897-1907.
Vargas, R., Rodríguez, J., Ammann, U., & Wheeler, P. W., (2008). Predictive current control of an induction machine fed by a matrix converter with reactive power control. IEEE Transactions on Industrial Electronics, Vol. 55, No. 12, pp. 4362-4371.
Vijayakumar, K., Raj, R. S., & Kannan, S., (2013). Realization of matrix converter as revolutionized power electronic converter employing sinusoidal pulse width modulation. In 2013 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1-5.
Vinodhini, J. S., Babu, R. S. R., & Glenn, J. A., (2016). Single phase to single phase step-down cycloconverter for electric traction applications. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 4914-3647.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx