CONTROL DE VELOCIDAD BASADO EN MODOS DESLIZANTES CON APROXIMACIONES DE LA FUNCIÓN SIGNO PARA UN MOTOR SÍNCRONO (SPEED CONTROL BASED ON SLIDING MODES WITH SIGN FUNCTION APPROXIMATIONS FOR A SYNCRONOUS MOTOR)

David Marcos Andrade, Francisco Beltrán Carbajal, Juan Eduardo Esquivel Cruz, Iván de Jesús Rivas Cambero, Alexis Castelán Pérez

Resumen


Resumen
En el contexto del crecimiento en la demanda de motores eléctricos para el desarrollo de sistemas de transporte modernos sustentables ambientalmente, se requieren constantes mejoras en eficiencia y fiabilidad de sus sistemas de control. En el presente artículo, se evalúan diversas aproximaciones continuas de la función signo en el control de velocidad por modos deslizantes para un motor síncrono como una solución alternativa para suprimir el fenómeno indeseable denominado chattering. Esta técnica de control se utiliza para mantener un sistema dinámico en un “modo deslizante”, una región de operación deseada o una superficie en la que el sistema se comporta de manera predefinida. En este sentido, la metodología de diseño de control basada en modos deslizantes ha demostrado ser efectiva en el desarrollo de técnicas para regular la operación de máquinas eléctricas en presencia de una amplia clase de perturbaciones dinámicas inciertas. A partir de un modelo de la dinámica no lineal del motor se deriva un controlador para ejecutar tareas de seguimiento de perfiles de velocidad. Se realiza un análisis comparativo con aproximaciones continuas de la función signo mediante simulaciones. Esta evaluación se enfoca en determinar la eficacia en la respuesta del sistema. Como resultado de este estudio, diferentes respuestas son obtenidas que incluyen una reducción significativa e incluso la eliminación del fenómeno de chattering. Los resultados de este análisis son valiosos ya que contribuyen a la mejora de los esquemas de control de velocidad en motores síncronos. Esta mejora se traduce en un aumento de la robustez y eficiencia del sistema, lo que lo hace adecuado para una amplia gama de aplicaciones.
Palabras Clave: Control de motores síncronos, control por modos deslizantes, chattering, función signo.

Abstract
In the context of the growing demand for electric motors in developing environmentally sustainable modern transportation systems, constant improvements in the efficiency and reliability of their control systems are required. In this article, various continuous sign function approximations are evaluated for a synchronous motor sliding-mode speed control as an alternative solution to suppress the undesirable phenomenon known as chattering. This control technique is used to maintain a dynamic system in a sliding mode, a desired operating region or a surface on which the system behaves in a predefined manner. In this sense, the control design methodology based on sliding modes has proven effective in developing techniques to regulate the operation of electric machines in the presence of a wide class of uncertain dynamic disturbances. A controller is derived from a model of the nonlinear dynamics of the motor to perform speed profile tracking tasks. A comparative analysis is conducted with sign function continuous approximations through simulations. This evaluation focuses on determining the system's response effectiveness. As a result of this study, different responses are obtained, including a significant reduction and even the chattering phenomenon elimination. The findings from this analysis are valuable as they contribute to improving speed control schemes in synchronous motors. This improvement increases system robustness and efficiency, making it suitable for various applications.
Keywords: Synchronous motor control, sliding mode control, chattering, sign function.

Texto completo:

626-642 PDF

Referencias


Akhil, R. S., Mini, V. P., Mayadevi, N., & Harikumar, R. (2020). Modified flux-weakening control for electric vehicle with PMSM drive. IFAC-PapersOnLine, 53(1), 325-331.

Beltran‐Carbajal, F., Favela‐Contreras, A., Hernandez‐Avila, J. L., Olvera‐Tapia, O., Sotelo, D., & Sotelo, C. (2020). Dynamic output feedback control for desired motion tracking on synchronous motors. International Transactions on Electrical Energy Systems, 30(3), e12260.

Beltran-Carbajal, F., Tapia-Olvera, R., Lopez-Garcia, I., Valderrabano-Gonzalez, A., Rosas-Caro, J. C., & Hernandez-Avila, J. L. (2019). Extended PI feedback tracking control for synchronous motors. International Journal of Control, Automation and Systems, 17, 1346-1358.

Beltran-Carbajal, F., Yañez-Badillo, H., Tapia-Olvera, R., Rosas-Caro, J. C., Sotelo, C., & Sotelo, D. (2023). Neural Network Trajectory Tracking Control on Electromagnetic Suspension Systems. Mathematics, 11(10), 2272.

Cheng, S., Yu, J., Zhao, L., & Ma, Y. (2020). Adaptive fuzzy control for permanent magnet synchronous motors considering input saturation in electric vehicle stochastic drive systems. Journal of the Franklin Institute, 357(13), 8473-8490.

Edwards, C., & Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications (1st ed.). Boca Raton, Florida: CRC Press.

Kyurkchiev, V., & Kyurkchiev, N. (2017). A family of recurrence generated functions based on the” half-hyperbolic tangent activation function”. Biomedical Statistics and Informatics, 2(3), 87-94.

Nise, Norman S. (2015). Control Systems Engineering, 7th ed. Pomona, California: John Wiley & Sons.

Sadeghi, M., Ghayem, F., Babaie-Zadeh, M., Chatterjee, S., Skoglund, M., & Jutten, C. (2019, September). LOSoft: ℓ0 Minimization via Soft Thresholding. In 2019 27th European Signal Processing Conference (EUSIPCO) (pp. 1-5). IEEE.

Sain, C., Banerjee, A., & Biswas, P. K. (2020). Modelling and comparative dynamic analysis due to demagnetization of a torque controlled permanent magnet synchronous motor drive for energy-efficient electric vehicle. ISA transactions, 97, 384-400.

Shokouhi, F., & Davaie Markazi, A. H. (2018). A new continuous approximation of sign function for sliding mode control. In International Conference on Robotics and Mechantronics (ICRoM 2018). Tehran. Iran.

Tarchala, G., & Orlawska-Kowalska, T. (2013). Sliding mode speed observer for the induction motor drive with different sign function approximation forms and gain adaptation. Organ Stowarzyszenia Elektrykow Polskish, 1, 13.

Utkin, V., Guldner, J., & Shi, J. (2009). Sliding Mode Control in Electro-Mechanical Systems (2nd ed.). Boca Raton, Florida: CRC Press.

Xiong, H., Zhang, M., Zhang, R., Zhu, X., Yang, L., Guo, X., & Cai, B. (2019). A new synchronous control method for dual motor electric vehicle based on cognitive-inspired and intelligent interaction. Future Generation Computer Systems, 94, 536-548.

Zhang, D., Zhang, H., Li, X., Zhao, H., Zhang, Y., Wang, S., ... & Wu, T. (2023). A PMSM control system for electric vehicle using improved exponential reaching law and proportional resonance theory. IEEE Transactions on Vehicular Technology.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas