ANÁLISIS NUMÉRICO DE PRUEBAS EXPERIMENTALES DE EXTRACCIÓN EN UN TORNILLO CORTICAL MINIATURA (NUMERICAL ANALYSIS OF PULL-OUT TESTS IN A MINIATURE CORTICAL SCREW)
Resumen
Las pruebas de extracción son una herramienta que permite comparar la estabilidad de los tornillos médicos. Las pruebas experimentales están limitadas a solo obtener la gráfica fuerza-desplazamiento. El análisis numérico permite complementar las pruebas de extracción para poder identificar las zonas de concentración de esfuerzos y deformaciones.
Se analizó de manera experimental y numérica tornillos corticales miniatura. Se utilizo un tornillo con rosca HA 1.5 y con longitud de 18mm. Los tornillos fueron insertados en espuma de poliuretano con una densidad de 640.74 kg/m^3. Se realizaron 3 pruebas experimentales con el mismo tipo de tornillo y espuma para obtener la curva fuerza-desplazamiento. El análisis numérico se realizó en Ansys mediante una simulación explicita en un entorno 2D, se obtuvo la curva fuerza-desplazamiento y la concentración de los esfuerzos y deformaciones.
La simulación permitió obtener, con un porcentaje de error de 1.74%, la fuerza de extracción en estos tornillos corticales. La grafica esfuerzo-desplazamiento difieren en cuanto a comportamiento, esto se debe a las limitaciones del análisis 2D asimétrico que se realizó.
Palabras clave: Análisis explícito, Elemento finito, Espuma de poliuretano, Prueba de extracción, Tornillo cortical.
Abstract
Pullout testing is a tool that allows you to compare the stability of medical screws. Experimental tests are limited to only obtaining the force-displacement graph. Numerical analysis allows us to complement the extraction tests to identify the areas of concentration of stress and deformations.
Miniature cortical screws were analyzed experimentally and numerically. A screw with an HA 1.5 thread and a length of 18mm was used. The screws were inserted in polyurethane foam with a density of 640.74 Kg/m^3. Three experimental tests were carried out with the same type of screw and foam to obtain the force-displacement curve. The numerical analysis was carried out in Ansys through an explicit simulation in a 2D environment, the force-displacement curve and the concentration of the stresses and deformations were obtained.
The simulation allowed us to obtain, with an error rate of 1.74%, the extraction force in these cortical screws. The stress-displacement graph differs in behavior, this is due to the limitations of the asymmetric 2D analysis that was carried out.
Keywords: Explicit analysis, Finite element, Polyurethane foam, Pull-out test, Cortical screw.
Texto completo:
26-38 PDFReferencias
ASTM F1839-08. (2016). Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. West Conshohocken: ASTM International. Obtenido de www.astm.org
ASTM F543-17. (2017). Standard Specification and Test Methods for Metallic Medical Bone Screws. West Conshohocken: ASTM International. Obtenido de www.astm.org
Calvert, K. L., Trumble, K. P., Webster, T. J., & Kirkpatrick, L. A. (2010). Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. Journal of Materials Science: Materials in Medicine, 21(5), 1453–1461. https://doi.org/10.1007/s10856-010-4024-6
Chatzistergos, P. E., Magnissalis, E. A., & Kourkoulis, S. K. (2010). A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Medical Engineering and Physics, 32(2), 145–154. https://doi.org/10.1016/j.medengphy.2009.11.003
Duaibis, R., Kusnoto, B., Natarajan, R., Zhao, L., & Evans, C. (2012). Factors affecting stresses in cortical bone around miniscrew implants A three-dimensional finite element study. Angle Orthodontist, 82(5), 875–880. https://doi.org/10.2319/111011-696.1
Einafshar, M., Hashemi, A., & van Lenthe, G. H. (2021). Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials. Computer Methods and Programs in Biomedicine, 202. https://doi.org/10.1016/j.cmpb.2021.105966
Hsu, C. C., Chao, C. K., Wang, J. L., Hou, S. M., Tsai, Y. T., & Lin, J. (2005). Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses. Journal of Orthopaedic Research, 23(4), 788–794. https://doi.org/10.1016/j.orthres.2004.11.002
Ketata, H., Affes, F., Kharrat, M., & Dammak, M. (2019). A comparative study of tapped and untapped pilot holes for bicortical orthopedic screws - 3D finite element analysis with an experimental test. Biomedizinische Technik. https://doi.org/10.1515/bmt-2018-0049
MatWeb. (10 de Agosto de 2023). MatWeb Material Property Data. Obtenido de Medical Grade Stainless Steel 316 LVM: https://www.matweb.com/search/DataSheet.aspx?MatGUID=29a84d10fada4e4fa3ebe3986e52d848&ckck=1
Park, Y. C., Chae, D. S., Kang, K. Y., Ding, Y., Park, S. J., & Yoon, J. (2021). Comparative pull-out performances of cephalomedullary nail with screw and helical blade according to femur bone densities. Applied Sciences (Switzerland), 11(2), 1–12. https://doi.org/10.3390/app11020496
Rajput, S. K., Kumar, J., Mehta, Y., Soota, T., & Saxena, K. K. (2020). Microstructural evolution and mechanical properties of 316L stainless steel using multiaxial forging. Advances in Materials and Processing Technologies, 6(3), 509–518. https://doi.org/10.1080/2374068X.2020.1728641
Tetteh, E., & McCullough, M. B. A. (2020). Impact of screw thread shape on stress transfer in bone: a finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 23(9), 518–523. https://doi.org/10.1080/10255842.2020.1743980
Widmer, J., Fasser, M. R., Croci, E., Spirig, J., Snedeker, J. G., & Farshad, M. (2020). Individualized prediction of pedicle screw fixation strength with a finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 23(4), 155–167. https://doi.org/10.1080/10255842.2019.1709173
Xu, M., Yang, J., Lieberman, I. H., & Haddas, R. (2019). Finite element method-based study of pedicle screw–bone connection in pullout test and physiological spinal loads. Medical Engineering and Physics, 67, 11–21. https://doi.org/10.1016/j.medengphy.2019.03.004
Zhang, Q. H., Tan, S. H., & Chou, S. M. (2004). Investigation of fixation screw pull-out strength on human spine. Journal of Biomechanics, 37(4), 479–485. https://doi.org/10.1016/j.jbiomech.2003.09.005
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx