ANÁLISIS NUMÉRICO DE PRUEBAS EXPERIMENTALES DE EXTRACCIÓN EN UN TORNILLO CORTICAL MINIATURA (NUMERICAL ANALYSIS OF PULL-OUT TESTS IN A MINIATURE CORTICAL SCREW)

Roberto Mendoza Gasca, Luis Alejandro Alcaraz Caracheo, Roberto Edú Arriaga Medina, Víctor Antonio Pantoja Cuarenta, Ramón Rodríguez Castro

Resumen


Resumen
Las pruebas de extracción son una herramienta que permite comparar la estabilidad de los tornillos médicos. Las pruebas experimentales están limitadas a solo obtener la gráfica fuerza-desplazamiento. El análisis numérico permite complementar las pruebas de extracción para poder identificar las zonas de concentración de esfuerzos y deformaciones.
Se analizó de manera experimental y numérica tornillos corticales miniatura. Se utilizo un tornillo con rosca HA 1.5 y con longitud de 18mm. Los tornillos fueron insertados en espuma de poliuretano con una densidad de 640.74 kg/m^3. Se realizaron 3 pruebas experimentales con el mismo tipo de tornillo y espuma para obtener la curva fuerza-desplazamiento. El análisis numérico se realizó en Ansys mediante una simulación explicita en un entorno 2D, se obtuvo la curva fuerza-desplazamiento y la concentración de los esfuerzos y deformaciones.
La simulación permitió obtener, con un porcentaje de error de 1.74%, la fuerza de extracción en estos tornillos corticales. La grafica esfuerzo-desplazamiento difieren en cuanto a comportamiento, esto se debe a las limitaciones del análisis 2D asimétrico que se realizó.
Palabras clave: Análisis explícito, Elemento finito, Espuma de poliuretano, Prueba de extracción, Tornillo cortical.

Abstract
Pullout testing is a tool that allows you to compare the stability of medical screws. Experimental tests are limited to only obtaining the force-displacement graph. Numerical analysis allows us to complement the extraction tests to identify the areas of concentration of stress and deformations.
Miniature cortical screws were analyzed experimentally and numerically. A screw with an HA 1.5 thread and a length of 18mm was used. The screws were inserted in polyurethane foam with a density of 640.74 Kg/m^3. Three experimental tests were carried out with the same type of screw and foam to obtain the force-displacement curve. The numerical analysis was carried out in Ansys through an explicit simulation in a 2D environment, the force-displacement curve and the concentration of the stresses and deformations were obtained.
The simulation allowed us to obtain, with an error rate of 1.74%, the extraction force in these cortical screws. The stress-displacement graph differs in behavior, this is due to the limitations of the asymmetric 2D analysis that was carried out.
Keywords: Explicit analysis, Finite element, Polyurethane foam, Pull-out test, Cortical screw.

Texto completo:

26-38 PDF

Referencias


ASTM F1839-08. (2016). Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. West Conshohocken: ASTM International. Obtenido de www.astm.org

ASTM F543-17. (2017). Standard Specification and Test Methods for Metallic Medical Bone Screws. West Conshohocken: ASTM International. Obtenido de www.astm.org

Calvert, K. L., Trumble, K. P., Webster, T. J., & Kirkpatrick, L. A. (2010). Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. Journal of Materials Science: Materials in Medicine, 21(5), 1453–1461. https://doi.org/10.1007/s10856-010-4024-6

Chatzistergos, P. E., Magnissalis, E. A., & Kourkoulis, S. K. (2010). A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Medical Engineering and Physics, 32(2), 145–154. https://doi.org/10.1016/j.medengphy.2009.11.003

Duaibis, R., Kusnoto, B., Natarajan, R., Zhao, L., & Evans, C. (2012). Factors affecting stresses in cortical bone around miniscrew implants A three-dimensional finite element study. Angle Orthodontist, 82(5), 875–880. https://doi.org/10.2319/111011-696.1

Einafshar, M., Hashemi, A., & van Lenthe, G. H. (2021). Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials. Computer Methods and Programs in Biomedicine, 202. https://doi.org/10.1016/j.cmpb.2021.105966

Hsu, C. C., Chao, C. K., Wang, J. L., Hou, S. M., Tsai, Y. T., & Lin, J. (2005). Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses. Journal of Orthopaedic Research, 23(4), 788–794. https://doi.org/10.1016/j.orthres.2004.11.002

Ketata, H., Affes, F., Kharrat, M., & Dammak, M. (2019). A comparative study of tapped and untapped pilot holes for bicortical orthopedic screws - 3D finite element analysis with an experimental test. Biomedizinische Technik. https://doi.org/10.1515/bmt-2018-0049

MatWeb. (10 de Agosto de 2023). MatWeb Material Property Data. Obtenido de Medical Grade Stainless Steel 316 LVM: https://www.matweb.com/search/DataSheet.aspx?MatGUID=29a84d10fada4e4fa3ebe3986e52d848&ckck=1

Park, Y. C., Chae, D. S., Kang, K. Y., Ding, Y., Park, S. J., & Yoon, J. (2021). Comparative pull-out performances of cephalomedullary nail with screw and helical blade according to femur bone densities. Applied Sciences (Switzerland), 11(2), 1–12. https://doi.org/10.3390/app11020496

Rajput, S. K., Kumar, J., Mehta, Y., Soota, T., & Saxena, K. K. (2020). Microstructural evolution and mechanical properties of 316L stainless steel using multiaxial forging. Advances in Materials and Processing Technologies, 6(3), 509–518. https://doi.org/10.1080/2374068X.2020.1728641

Tetteh, E., & McCullough, M. B. A. (2020). Impact of screw thread shape on stress transfer in bone: a finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 23(9), 518–523. https://doi.org/10.1080/10255842.2020.1743980

Widmer, J., Fasser, M. R., Croci, E., Spirig, J., Snedeker, J. G., & Farshad, M. (2020). Individualized prediction of pedicle screw fixation strength with a finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 23(4), 155–167. https://doi.org/10.1080/10255842.2019.1709173

Xu, M., Yang, J., Lieberman, I. H., & Haddas, R. (2019). Finite element method-based study of pedicle screw–bone connection in pullout test and physiological spinal loads. Medical Engineering and Physics, 67, 11–21. https://doi.org/10.1016/j.medengphy.2019.03.004

Zhang, Q. H., Tan, S. H., & Chou, S. M. (2004). Investigation of fixation screw pull-out strength on human spine. Journal of Biomechanics, 37(4), 479–485. https://doi.org/10.1016/j.jbiomech.2003.09.005






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas