OPTIMIZACIÓN DE UN RECIPIENTE CRIOGÉNICO PARA ALMACENAR HIDRÓGENO LÍQUIDO UTILIZADO EN UN VEHÍCULO AÉREO NO TRIPULADO (CRYOGENIC VESSEL OPTIMIZATION FOR LIQUID HYDROGEN STORAGE ONBOARD AN UNMANNED AERIAL VEHICLE)

Luz Lara Rodríguez, Salvador M. Aceves, Arnoldo Maeda Sánchez, José Martín Medina Flores, Alvaro Sánchez Rodríguez

Resumen


Resumen
El almacenamiento de hidrógeno líquido (LH2) utilizado para alimentar la celda de combustible de un UAV (vehículo aéreo no tripulado) ha demostrado tener grandes ventajas con respecto del hidrógeno gaseoso. No obstante, uno de los retos a los que se enfrenta es a la pérdida de masa de H2 por evaporación debida a la transferencia de calor provocada por la diferencia de temperaturas entre el ambiente y el líquido contenido; una forma de mitigar las pérdidas de H2 es incrementando la presión de diseño y con ello la presión de operación máxima. En este trabajo se optimiza el recipiente de almacenamiento de hidrógeno de un UAV existente, aumentando la presión de diseño hasta alcanzar la autonomía de vuelo máxima. Los resultados muestran un incremento en la autonomía de vuelo de hasta un 12%, mientras que las pérdidas por evaporación se reducen de 39 a 4.3%.
Palabras clave: autonomía, hidrógeno líquido; presión, UAV.

Abstract
The storage of liquid hydrogen (LH2) used to power the fuel cell of a UAV (unmanned aerial vehicle) has shown to have great advantages over hydrogen in a gaseous or compressed state. However, one of the challenges facing LH2 storage is the loss of H2 mass through evaporation due to heat transfer caused by the temperature difference between the environment and the LH2; one way to mitigate H2 losses is by increasing the design pressure, and with this the maximum operating pressure. In this work, the hydrogen storage container is optimized by increasing the design pressure until reaching maximum flight endurance in an existing UAV. The results show an increase in flight endurance of up to 12%, while evaporative losses are reduced 39 to 4.3%.
Keywords: flight endurance, liquid hydrogen, pressure, UAV.

Texto completo:

510-527 PDF

Referencias


Aceves, S., Espinoza-Loza, F., Ledesma-Orozco, E., Ross, T., Weisberg, A., Brunner , T., & Kircher, O. (2010). High-density automotive hydrogen storage with cryogenic capable pressure vessels. International Journal of Hydrogen Energy (35), 1219-1226.

American Society of Mechanical Engineers. (2019). ASME Boiler & Pressure Vessel Code, Section II Part D: Materials.

American Society of Mechanical Engineers. (2019). ASME Boiler and Pressure Vessel Code, Section VIII: Rules for Construction of Pressure Vessels (Vol. Division 1).

Choi, Y., Kim, J., Park, S., Park, H., & Daejun, C. (2022). Design and analysis of liquid hydrogen fuel tank for heavy duty truck. International Journal of Hydrogen Energy, 47, 14687-14702.

Depcik, C., Cassady, T., Collicott, B, Preetham Burugupally, S., Li, X., Saud Alam, S., Hobeck, J. (2020). Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering small Unmanned Aerial Vehicle. Energy Conversion and Management, 207(112514).

Garceau, N., Kim, S., Lim, C., Cho, M., Kim , K., & Baik, J. (2015). Performance test of a 6 L Liquid Hydrogen fuel tank for unmanned aerial vehicles. IOP Conferenre Series: Material Science and Engineering.

Hassnian Mohsan, S., Asghar Khan, M., Noor, F., Ullah, I., & Alsharif, M. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A comprehesive Review. MDPI: Drones, 6, 27.

Leachman, J., Street, M., & Graham, T. (2012). Catalytic pressurization of liquid hydrogen fuel tanks for unmanned aerial vehicles. AIP Conference Proceedings: Advances in Cryogenic Engineering, 1434, 1261-1267.

Linde Engineering. (2022). Linde Engineering - Mobilizing buses and trains with H2. Recuperado el 18 de October de 2022, de https://www.linde-engineering.com/en/about-linde-engineering/success-stories/mobilizing-public-buses-and-trains-with-h2.html.

Mills, G., Buchholtz, B., & Olsen, A. (2012). Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft. Advances in Cryogenic Engineering AIP Conference Proceedings , 1434, 773-780.

Mital, S., Gyekenyesi, J., Arnold , S., Sullivan, R., Manderscheid, J., & Murthy, P. (2006). Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hdrogen Cryogenic Storage Tank Structures for Aircraft Applications. NASA Scientific and Technical Information, 50.

Moreno-Blanco, J., Petitpas, G., Espinosa-Loza, F., Elizalde-Blancas, F., Martínez-Frias, J., & Aceves, S. M. (2019). The fill density of automotive cryo-compressed hydrogen vessels. International Journal of Hydrogen Energy(44), 1010-1020.

J., Petitpas, Moreno-Blanco, G., Espinosa-Loza, F., Elizalde-Blancas, F., Martinez-Frias, J., & Aceves, S. M. (2019). The storage performance of automotive cryo-compressed hydrogen vessels. International Journal of Hydrogen Energy(44), 16841-16851.

National Institute of Standards and Technology. (2013). REFPROP (versión 9.1) [Software de computador]. NIST. https://www.nist.gov/srd/refprop.

Senkov , O., Bhat, R., & Senkova, S. (2004). High Strength Aluminium Alloys for Cryogenic Applications. Metallic Materials with High Structural Efficiency , 151-162.

Stroman, R., Schuette, M., Swider-Lyons, K., Rodgers, J., & Edwards, D. (2014). Liquid hydrogen fuel system design and demostration in a small long endurance air vehicle. International Journal of Hydrogen Energy, 39, 11279-11290.

Sullivann , R., Palko, J., Tornabene, R., Bednarcyk , B., Powers , L., Mital, S., Hunter, J. (2006). Engineering Analysis Studies for Preliminary Design of Lightweight Hydrogen Tanks in UAV Applications. NASA.

Swider-Lyons, K., MacKrell, J., Rodgers, J., Page, G., Schuette, M., & Stroman, R. (21-22 de September de 2011). Hydrogen Fuel Cell Propulsion for Long Endurance Small UAVs. American Institute of Aeronautics and Astronatics.

Van Sciver, S. (2012). Low-Temperature Materials Properties. En Helium Cryogenics (2 ed.). Springer.

Winnefeld, C., Kadyk, T., Bensmann, B., Krewer, U., & Hanke-Rauschenbach, R. (2018). Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications. Energies(11,105).

Xu, Z., Zhao, N., Hillmansen, S., Roberts, C., & Yan, Y. (2022). Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review. MDPI: energies, 15(6467), 22.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas