FIBRAS ONDULADAS CON ALAMBRE RECOCIDO Y GALVANIZADO PARA REFORZAR EL CONCRETO A FLEXIÓN (CRIMPED FIBERS WITH ANNEALED AND GALVANIZED WIRES TO REINFORCE THE CONCRETE UNDER FLEXURAL LOAD)

Alejandro Meza de Luna, Fernando Chávez Valdivia, Rodolfo Benjamín Sierra Ortiz, Rafael Reyes Cortes, Alejandra Ibeth García Castañón

Resumen


Resumen
Aunque el concreto reforzado con fibra ha demostrado tener una integridad estructural superior al concreto convencional, las fibras de acero comerciales para reforzar el concreto son de alto costo y de escasa o nula distribución en algunas ciudades de México. Como solución, en este trabajo se utilizaron elementos metálicos comerciales como alambre galvanizado y alambre recocido para producir fibras rizadas por medio de un mecanismo operado manualmente. Las fibras propuestas se mezclaron con el concreto para producir especímenes basados en la norma ASTM C-78, utilizando tres dosis de fibra diferentes (20, 30 y 40 kg/m3). Además, se ensayaron elementos de control y de concreto con fibras comerciales para fines comparativos. De la misma forma, se analizaron la trabajabilidad, carga máxima a la flexión y resistencia residual siguiendo las normas ASTM y JSCE. Posterior a los ensayos, se realizó la prueba de pullout y se realizó un conteo de la cantidad de fibras, para relacionarlas con los resultados. Los resultados muestran que a pesar que la relación de aspecto, el número de fibras y la resistencia a la tracción de las fibras propuestas es inferior a las fibras comerciales, los resultados indican que las muestras con fibras rizadas galvanizadas tienen una trabajabilidad y una resistencia a la flexión post-fisuración similares o superiores a aquellas con fibras comerciales. Por otro lado, las probetas con fibras rizadas recocidas demostraron una buena resistencia post-fisuración, pero su comportamiento fue inferior al de otros concretos reforzados con fibras.
Palabras Clave: concreto reforzado con fibras, alambre galvanizado, alambre recocido, flexión, pullout, análisis experimental.

Abstract
Even though fiber reinforced concrete has shown superior structural integrity to conventional concrete, commercial steel fibers to reinforce concrete are expensive and have scarce or no distribution in some cities in Mexico. As a solution, in this paper, commercial metallic elements as galvanized and annealed wires were used to produce crimped fibers by means of a mechanism manually operated. The proposed fibers were mixed with the concrete to produce test samples based on ASTM C-78 standard, using three different fiber dosages (20, 30 and 40 kg/m3). In addition, control and concrete with commercial fibers samples were tested for comparison purposes. Workability, flexural maximum load, and residual strength were analyzed following the ASTM and JSCE standards. Also, the pull-out test and amount of fibers were related with the results. In spite of the aspect ratio, the number of fibers and the tensile strength of the proposed fibers is lower than commercial fibers, the results indicate that the samples with galvanized crimped fibers have a similar or superior workability and post-cracking flexural strength than those with commercial fibers. On the other hand, the specimens with annealed crimped fibers demonstrated good post-cracking strength, but their performance was lower than others fiber reinforced concrete tested.
Keywords: fiber-reinforced concrete, galvanized wire, annealed wire, bending, pullout, experimental analysis.

Texto completo:

578-595 PDF

Referencias


Ding, Y., Zhang, F., Torgal, F., Zhang Y. (2012). Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory. Composite Structures, 94(8), 2440–2449.

Meza, A., Pujadas, P., Meza, L.M., Pardo-Bosch, F., López-Carreño, R.D. (2021). Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study. Materials, 14, 240.

Meza-de Luna, A., Kaur, G., Preciado-Martínez, H. J., Gutiérrez-López, I. A. (2021). Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas. Conciencia Tecnológica, 61.

Meza, A., Ahmed, F. U. (2020). Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials, 265, 120331.

Meza, A., Meza, L. M., Chávez, F., Medina, R. G., Esparza, A. A. (2019). Experimental evaluation of galvanized and annealed wires to produce hooked fibers as reinforcement of concrete under flexion. Pistas Educativas, 133.

Meza, A., Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286–291

Meza, A., Ortiz, J.A., Peralta, L., Pacheco, J., Soto, J.J. (2014). Experimental mechanical characterization of steel and polypropylene fiber reinforced concrete. Revista Tecnica Facultad de Ingeniería Universidad Zulia, 37, 106-115.

Carmona, S., Molins, C., Aguado, A., Mora, F., (2016). Distribution of fibers in SFRC segments for tunnel linings. Tunnelling and Underground Space Technology, 51, 238-249.

Colombo, M., Martinelli, P., di Prisco, M., (2016). On the blast resistance of high performance tunnel segments. Materials and Structures. 49(1-2), 117-131.

Nehdi, M.L., Mohamed, N., Soliman, A.M., (2016). Investigation of buried full-scale SFRC pipes under live loads. Construction and Building Materials, 102, 733-742.

Emon, M.A.B., Manzur, T., Sharif, M.S. (2017). Suitability of locally manufactured galvanized iron (GI) wire fiber as reinforcing fiber in brick chip concrete. Case Studies in Construction Materials, 7, 217-227.

Zhong, H., Zhang M. (2020). Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres. Journal of Cleaner Production.

Pajak, M. (2019). Concrete reinforced with various amounts of steel fibers reclaimed from end of life tires. Matec web conferences, 262, 06008.

Bashar, S. Mohammed, V., Khed, C., Liew, M. S. (2018). Optimization of hybrid fibres in engineered cementitious composites. Construction and Building Materials, 190, 24–37.

Meddah, M. S., Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and Building Materials, 23, 3196–3205.

Gelfi, M., Solazzi, L., Poli, S. (2017). Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires. Materials, 10(3), 264-276.

Yang, C.C., Liu, C.L. (2016). Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions. Materials, 9, 693-702.

Yang, Y.S., Bae, J.G., Park, C.G. (2008). Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing. Materials Science & Engineering A, 488, 554-561.

Prasad M.J.N.V., Reiterer M.W., Kumar K.S. Microstructure and mechanical behavior of annealed MP35N alloy wire. Materials Science & Engineering, A636, 340–351.

Liu, Y.D., Zhang, Y.D., Tidu, A., Zuo, L. (2012). Fiber Texture Evolution of Ferrite Wires during Drawn-torsion and Drawn-annealing-torsion Process. Journal of Materials Science & Technology, 28, 1010-1014.

ACI 211.1. (1991). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. Farmington Hills, MI:.

ASTM-C78. (2000). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). West Conshohocken, PA, United States,.

ASTM C-192. (2000). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken, PA, United States: Annual Book of ASTM Standards.

Dramix. (2023). Steel fiber concrete reinforcement for industrial floors[online]. Available from: [Accessed 4 January 2023].

ASTM C1018. (2005). Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, PA: ASTM International.

JSCE-SF4. (1984). Standard for flexural strength and flexural toughness, method of tests for steel fiber reinforced concrete. Japan Concrete Institute, Concrete library of JSCE.

Dvorkin, L., Dvorkin, O., Zhitkovsky, V., Ribakov, Y. (2011). A method for optimal design of steel fiber reinforced concrete composition. Materials and Design, 32(6), 3254-3262.

Juarez, C., Valdez, P., Durán, A., Sobolev, K. (2007). The diagonal tension behavior of fiber reinforced concrete beams. Cement & Concrete Composites, 29, 402–408.

Khaloo, A., Raisi, E.M., Hosseini, P., Tahsiri, H. (2014). Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, 179-186.

ASTM C143. (2000). Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken, PA: ASTM International.

ACI 544.1R-96. (2002). State-of-the-Art Report on Fiber Reinforced Concrete. ACI Committee 544.

Abrishambaf, A., Barros, J.A.O., Cunha, V.M.C.F., Fraz, C. (2017). Time dependent behaviour of fibre pull-out in self-compacting concrete. Cement and Concrete Composites, 77, 14-28.

Borg, R.P., Baldacchino, O., Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47.

Soutsos, M.N., Le, T.T., Lampropoulos, A.P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710.

ACI 360R-10. (2010). Guide to Design of Slabs on Ground. Detroit, MI: Reported by Committee 360 American Concrete Institute.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas