ESTIMACIÓN DE MODOS DE OSCILACIÓN EN SISTEMAS ELÉCTRICOS DE POTENCIA (ESTIMATION OF OSCILLATION MODES IN ELECTRICAL POWER SYSTEMS)

Johinner Mauricio Sanabria Villamizar, Irvin López García, Francisco Beltrán Carbajal

Resumen


Resumen
Las señales no lineales y no estacionarias han venido penetrando los sistemas eléctricos de potencia debido a la aparición de nuevas tecnologías que llevan consigo la utilización de electrónica. Como consecuencia, el criterio de calidad de potencia se ha tenido que adaptar a las nuevas condiciones de los sistemas eléctricos y esto ha llevado a la necesidad de buscar nuevas metodologías de análisis de las señales adquiridas. En este documento se presenta una revisión sobre los métodos de análisis que se han venido implementando en el procesamiento de señales no lineales y no estacionarias en sistemas eléctricos de potencia modernos. Para este fin se explora la aplicación de la Transformada de Hilbert-Huang (HHT), exponiendo cada una de las ventajas y desventajas de dicha implementación. Para validar la metodología se proponen señales sintéticas con características que describen de manera adecuada los comportamientos típicos en estos sistemas. Además, se realiza el análisis para una señal de corriente proveniente de un sistema de potencia con estas características.
Palabras Clave: Transformada de Hilbert-Huang, armónicos, oscilaciones, estimación.

Abstract
Non-linear and non-stationary signals have been penetrating electrical power systems due to the appearance of new technologies that involve the use of electronics. Consequently, the power quality criterion has had to adapt to the new conditions of the electrical systems, and this has led to the need to search for new methodologies for analyzing the signals obtained. This document presents a review of the analysis methods that have been implemented in non-linear and non-stationary signal processing in modern electrical power systems. For this purpose, the application of the Hilbert-Huang Transform (HHT) is explored, exposing each of the advantages and disadvantages of said implementation. To validate the methodology, synthetic signals with characteristics that adequately describe the typical behaviors in these systems are proposed. In addition, the analysis is performed for a current signal from a power system with these characteristics.
Keywords: Hilbert-Huang transform, harmonics, oscillations, estimation.

Texto completo:

856-870 PDF

Referencias


Antonino-Daviu, J. A., Riera-Guasp, M., Pineda-Sanchez, M., & Perez, R. B. (2009). A critical comparison between DWT and Hilbert–Huang-based methods for the diagnosis of rotor bar failures in induction machines. IEEE Transactions on Industry Applications, 45(5), 1794-1803.

Bíscaro, A. A. P., Pereira, R. A. F., Kezunovic, M., & Mantovani, J. R. S. (2015). Integrated fault location and power-quality analysis in electric power distribution systems. IEEE Transactions on power delivery, 31(2), 428-436.

Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 80(4), 520-538.

Feldman, M. (2011). Hilbert transform in vibration analysis. Mechanical systems and signal processing, 25(3), 735-802.

Fosso, O. B., & Molinas, M. (2018, October). EMD mode mixing separation of signals with close spectral proximity in smart grids. In 2018 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe) (pp. 1-6). IEEE.

Gasca, M. V., Bueno-López, M., Molinas, M., & Fosso, O. B. (2018). Time-Frequency analysis for nonlinear and non-stationary signals using HHT: A mode mixing separation technique. IEEE Latin America Transactions, 16(4), 1091-1098.

Huang, N. E. (2014). Hilbert-Huang transform and its applications (Vol. 16). World Scientific.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.

Kulia, G., Molinas, M., Lundheim, L., & Larsen, B. B. (2016). Towards a real-time measurement platform for microgrids in isolated communities. Procedia engineering, 159, 94-103.

Li, D., Ukil, A., Satpathi, K., & Yeap, Y. M. (2020). Hilbert–Huang Transform Based Transient Analysis in Voltage Source Converter Interfaced Direct Current System. IEEE Transactions on Industrial Electronics, 68(11), 11014-11025.

Li, Y., Yang, D., Liu, F., Cao, Y., & Rehtanz, C. (2016). Interconnected power systems. Berlin: Springer.

Messina, A. R. (Ed.). (2009). Inter-area oscillations in power systems: a nonlinear and nonstationary perspective. Springer Science & Business Media.

Messina, A. R., Vittal, V., Heydt, G. T., & Browne, T. J. (2009). Nonstationary approaches to trend identification and denoising of measured power system oscillations. IEEE Transactions on Power Systems, 24(4), 1798-1807.

Rilling, G., & Flandrin, P. (2007). One or two frequencies? The empirical mode decomposition answers. IEEE transactions on signal processing, 56(1), 85-95.

Sanabria-Villamizar, J. M., Bueno-López, M., & Bernal Alzate, E. (2019, November). Signal analysis in power systems with high penetration of non-conventional energy sources. In International Conference on Advanced Engineering Theory and Applications (pp. 145-154). Springer, Cham.

Sanabria-Villamizar, M., Bueno-López, M., & Salazar-Caceres, F. (2021, June). A New Hybrid Signal Analysis Method for the Evaluation of Power Quality Disturbances. In 2021 IEEE Madrid PowerTech (pp. 1-6). IEEE.

Sanabria-Villamizar, M., Bueno-López, M., Hernández, J. C., & Vera, D. (2022). Characterization of household-consumption load profiles in the time and frequency domain. International Journal of Electrical Power & Energy Systems, 137, 107756.

Shaik, M., Shaik, A. G., & Yadav, S. K. (2022). Hilbert–Huang transform and decision tree based islanding and fault recognition in renewable energy penetrated distribution system. Sustainable Energy, Grids and Networks, 30, 100606.

Silveira, P. M., Duque, C., Baldwin, T., & Ribeiro, P. F. (2009, July). Sliding window recursive DFT with dyadic downsampling—A new strategy for time-varying power harmonic decomposition. In 2009 IEEE Power & Energy Society General Meeting (pp. 1-6). IEEE.

Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.

Yu, Y., Zhao, W., Li, S., & Huang, S. (2021). A two-stage wavelet decomposition method for instantaneous power quality indices estimation considering interharmonics and transient disturbances. IEEE Transactions on Instrumentation and Measurement, 70, 1-13.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas