ANALISIS DE UN SISTEMA DE PRODUCCIÓN CERRADO EN RED (ANALYSIS OF A CLOSED NETWORK PRODUCTION SYSTEM)
Resumen
En este trabajo se presenta la simulación de un sistema cerrado en red con múltiples servidores en donde se obtiene el cálculo para poder analizar el comportamiento del tiempo de ciclo (Tc), además se creó un diseño de experimentos 25 y junto con el un metamodelo que ayuda a realizar de mejor manera el análisis . Al ser un procedimiento que permite visualizar el comportamiento del sistema, es de gran utilidad para la toma de decisiones responsables en donde se requiere implementar herramientas para analizar el desempeño de sistemas en líneas de espera en ambientes de producción y de servicios generando un mejor equilibrio en la línea de espera y entregas a tiempo a los cliente
Palabras Clave: Línea de espera, múltiples servidores, servidor, sistemas cerrados.
Abstract
In this work, the simulation of a closed network system with multiple servers is presented where the calculation is obtained to be able to analyze the behavior of the cycle time (Tc), in addition a design of experiments 25 was created and together with it a metamodel that helps to better perform the analysis. As it is a procedure that allows visualizing the behavior of the system, it is very useful for making responsible decisions where it is necessary to implement tools to analyze the performance of systems in waiting lines in production and service environments, generating a better balance in the waiting line and deliveries on time to customers.
Keywords: Closed systems, multiple servers, server, waiting line.
Texto completo:
657-669 PDFReferencias
Altiparmak, F., Dengiz, B., & Bulgak, A. (2007). Buffer allocation and performance modeling in asynchronous assembly system operations: An artificial neural network metamodeling approach. Applied Soft Computing, 7(3), 946-956. doi: 10.1016/j.asoc.2006.06.002
Ameen, W., AlKahtani, M., Mohammed, M. K., Abdulhameed, O., & El-Tamimi, A. M. (2018). Investigation of the effect of buffer storage capacity and repair rate on production line efficiency. Journal of King Saud University – Engineering Sciences, 30(3), 243-249. doi:10.1016/j.jksues.2018.03.001
Amiri, M., & Mohtashami, A. (2012). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. The International Journal of Advanced Manufacturing Technology volume, 62(1-4), 371-383. doi:10.1007/s00170-011-3802-8
Askin, R. G., & Hanumantha, G. J. (2018). Queueing network models for analysis of nonstationary manufacturing systems. International Journal of Production Research, 56(1-2), 22-42.
Avi-Itzhak, B., & Heyman, D. P. (1973). Approximate Queuing Models for Multiprogramming Computer Systems. Operations Research, 21(6), 1212–1230. https://doi.org/10.1287/opre.21.6.1212
Curry, G. L., & Feldman, R. M. (2009). Manufacturing Systems Modeling and Analysis. Berlin: Springer.
Dengiz, B., Ic, Y. T., & Belgin, O. (2016). A meta-model-based simulation optimization using hybrid simulation- analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120(February), 120128.doi: 10.1016/j.matco m.2015.07.005
Durieux, S., & Pierreval, H. (2004). Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource. International Journal of Production Economics, 2004(89), 21-30. doi:10.1016/S0925-5273(03)00199-3
Kuehl, R. O. (2000). Design of experiments: statistical principles of research design and analysis. Pacific Grove: Duxbury/Thomson Learning
Leal - Jamil, & M. G. Chong - Chong, Best Practices in Manufacturing Processes (págs. 367- 388). Cham: Springer. doi:10.1007/978-3- 319-99190-0_17
Montgomery, D. C. (2000). Design and Analysis of Experiments. New York: Wiley.
Motlagh, M. M., Azimi, P., Amiri, M., & Madraki, G. (2019). An Efficient Simulation Optimization Methodology to Solve a Multi-Objective Problem in Unreliable Unbalanced Production Lines. Expert Systems with Applications, 138, 1-41. doi:10.1016/j.eswa.2019.112836
Nuñez-Piña, F., Medina-Marin, J., Seck-Tuoh-Mora, J. C., Hernandez-Romero, N., & Hernandez-Gress, E. S. (2018). Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks. Complexity, 2018(1254794), 1-10.doi:10.1155/2018/1254794
Papadopoulos , C., O'Kelly , M., & Vidalis, M. (2009). Analysis and Design of Discrete Part Production Lines. Berlin: Springer. doi:10.1007/978-0-387-89494-2
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx