DISEÑO, IMPLEMENTACIÓN Y PRUEBAS DE UN SISTEMA PARA LA EVALUACIÓN DE ALGORITMOS DE BÚSQUEDA DE MÁXIMA POTENCIA PARA CELDAS SOLARES (DESIGN, IMPLEMENTATION, AND TESTING OF A SYSTEM FOR THE EVALUATION OF MAXIMUM POWER POINT TRACKING ALGORITHMS FOR SOLAR CELLS)

Roberto Isaac Rico Camacho, Luis Josué Ricalde Castellanos, Eduardo Ernesto Ordoñez López, Braulio José Cruz Jiménez

Resumen


Resumen
Este trabajo presenta el diseño, implementación y pruebas de un sistema de evaluación para algoritmos de busqueda de máxima potencia (MPPT) en aplicaciones fotovoltaicas (PV). La plataforma de pruebas utiliza un emulador fotovoltaico para simular una celda solar que opera bajo las condiciones de irradiación y temperatura deseadas. Un microcontrolador se programa con el script del algoritmo de MPPT a evaluar. Basado en esto, el microcontrolador envia la señal de control a una placa de potencia con un convertidor tipo boost para llevar al sistema a un punto de operación determinado. Por último, las mediciones requeridas por el estándar de pruebas se registran en una base de datos para su posterior análisis. Se comprobó que la plataforma implementada simuló satisfactoriamente el comportamiento del algoritmo seleccionado de acuerdo con lo reportado en la literatura. El objetivo principal del trabajo es facilitar la creación de plataformas de prueba para diversos sistemas de control en aplicaciones fotovoltaicas.
Palabras Clave: MPPT, Fotovoltaico, Plataforma de pruebas.

Abstract
This work presents the design, implementation, and testing of a system that evaluates maximum power point tracking (MPPT) algorithms for photovoltaic applications. The test platform integrates a photovoltaic (PV) emulator to simulate a solar cell that operates under the desired irradiance and temperature conditions. A microcontroller is programmed with the script of the algorithm being tested. Based on this, the microcontroller sends the control signal to a boost converter that drives the system to the operating point determined by the MPPT algorithm. Lastly, the measurements required by the test standard are stored in a database for further analysis. The implemented platform successfully simulated the behavior reported in the literature of the selected algorithm. The main objective of this work is to accelerate the creation of tests platforms for diverse control systems in photovoltaic applications.
Keywords: MPPT, Photovoltaic, Test-platform.

Texto completo:

612-635 PDF

Referencias


Abdel-Salam, M., El-Mohandes, M. T., & El-Ghazaly, M. (2020). An Efficient Tracking of MPP in PV Systems Using a Newly-Formulated P&O-MPPT Method Under Varying Irradiation Levels. Journal of Electrical Engineering & Technology, 15(1), 501–513. https://doi.org/10.1007/s42835-019-00283-x

Ahmed, J., & Salam, Z. (2015). An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 150, 97–108. https://doi.org/10.1016/j.apenergy.2015.04.006

Ahmed, J., & Salam, Z. (2018). An Enhanced Adaptive P&O MPPT for Fast and Efficient Tracking Under Varying Environmental Conditions. IEEE Transactions on Sustainable Energy, 9(3), 1487–1496. https://doi.org/10.1109/TSTE.2018.2791968

Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., Dallemand, J. F., & Parra, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. https://doi.org/10.1016/j.rser.2014.01.004

Ali, A., Almutairi, K., Padmanaban, S., Tirth, V., Algarni, S., Irshad, K., Islam, S., Zahir, M. H., Shafiullah, M., & Malik, M. Z. (2020). Investigation of MPPT Techniques under Uniform and Non-Uniform Solar Irradiation Condition-A Retrospection. IEEE Access, 8, 127368–127392. https://doi.org/10.1109/ACCESS.2020.3007710

Boukenoui, R., Bradai, R., Mellit, A., Ghanes, M., & Salhi, H. (2015). Comparative analysis of P&O, modified hill climbing-FLC, and adaptive P&O-FLC MPPTs for microgrid standalone PV system. 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 1095–1099. https://doi.org/10.1109/ICRERA.2015.7418579

CENELEC, E. C. for E. S. (n.d.). European Standard EN 50530. Overall efficiency of grid connected photovoltaic inverters.

Eltamaly, A. M., Farh, H. M. H., & Othman, M. F. (2018). A novel evaluation index for the photovoltaic maximum power point tracker techniques. Solar Energy, 174, 940–956. https://doi.org/10.1016/j.solener.2018.09.060

Escobar, G., Pettersson, S., Ho, C. N. M., & Rico-Camacho, R. (2017). Multisampling Maximum Power Point Tracker (MS-MPPT) to Compensate Irradiance and Temperature Changes. IEEE Transactions on Sustainable Energy, 8(3), 1096–1105. https://doi.org/10.1109/TSTE.2017.2654965

Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 20(4), 963–973. https://doi.org/10.1109/TPEL.2005.850975

Huynh, P., & Cho, B. H. (1996). Design and analysis of a microprocessor-controlled peak-power-tracking system [for solar cell arrays]. IEEE Transactions on Aerospace and Electronic Systems, 32(1), 182–190. https://doi.org/10.1109/7.481260

Kandemir, E., Cetin, N. S., & Borekci, S. (2017). A comprehensive overview of maximum power extraction methods for PV systems. Renewable and Sustainable Energy Reviews, 78(December 2016), 93–112. https://doi.org/10.1016/j.rser.2017.04.090

Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(September 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132

Kermadi, M., Salam, Z., Ahmed, J., & Berkouk, E. M. (2019). An Effective Hybrid Maximum Power Point Tracker of Photovoltaic Arrays for Complex Partial Shading Conditions. IEEE Transactions on Industrial Electronics, 66(9), 6990–7000. https://doi.org/10.1109/TIE.2018.2877202

Koutroulis, E., & Blaabjerg, F. (2015). Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems. Electric Power Components and Systems, 43(12), 1329–1351. https://doi.org/10.1080/15325008.2015.1030517

Kumar Dash, S., Nema, S., Nema, R. K., & Verma, D. (2015). A comprehensive assessment of maximum power point tracking techniques under uniform and non-uniform irradiance and its impact on photovoltaic systems: A review. Journal of Renewable and Sustainable Energy, 7(6), 063113. https://doi.org/10.1063/1.4936572

Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L., & Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports, 6, 1312–1327. https://doi.org/10.1016/j.egyr.2020.05.013

Pandey, A., Dasgupta, N., & Mukerjee, A. K. (2008). High-performance algorithms for drift avoidance and fast tracking in solar MPPT system. IEEE Transactions on Energy Conversion, 23(2), 681–689. https://doi.org/10.1109/TEC.2007.914201

Pilakkat, D., & Kanthalakshmi, S. (2019). An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy, 178, 37–47. https://doi.org/10.1016/j.solener.2018.12.008

Raedani, R., & Hanif, M. (2014). Design, testing and comparison of P&O, IC and VSSIR MPPT techniques. 2014 International Conference on Renewable Energy Research and Application (ICRERA), 322–330. https://doi.org/10.1109/ICRERA.2014.7016404

Sundareswaran, K., Vigneshkumar, V., Sankar, P., Simon, S. P., Srinivasa Rao Nayak, P., & Palani, S. (2016). Development of an Improved P&O Algorithm Assisted Through a Colony of Foraging Ants for MPPT in PV System. IEEE Transactions on Industrial Informatics,

(1), 187–200. https://doi.org/10.1109/TII.2015.2502428

Verma, D., Nema, S., Shandilya, A. M., & Dash, S. K. (2016). Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 54, 1018–1034. https://doi.org/10.1016/j.rser.2015.10.068






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas