MODELO MATEMÁTICO Y ANÁLISIS ESTRUCTURAL DE UN VEHÍCULO DE GUIADO AUTOMÁTICO PARA LA INDUSTRIA 4.0 (MATHEMATICAL MODEL AND STRUCTURAL ANALYSIS OF AN AUTOMATED GUIDED VEHICLE FOR INDUSTRY 4.0)

Hiroki Sasamoto Cruz, Ramiro Velázquez Guerrero, Sebastián Gutiérrez Calderón, Luis Arturo Méndez Alba, Gastón Goñi Tascón

Resumen


Resumen
Este artículo presenta el diseño e implementación de un vehículo de guiado automático (AGV) destinado al transporte de materiales y herramientas en entornos industriales. Nuestra propuesta de AGV presenta un diseño innovador inspirado en las culturas prehispánicas de México. La implementación del prototipo fue realizada con materiales de alta resistencia y procesos de manufactura digital. Un análisis por elementos finitos (FEA) muestra que el AGV es capaz de transportar cargas de 700 kg sin sufrir ningún daño estructural y que los casos críticos donde se contemplan colisiones solo causarían daños mínimos. A su vez, el trabajo introduce un modelo matemático para entender las ecuaciones que definen la dinámica del AGV. Dicho modelo permite simular su movimiento y puede ser utilizado para mejorar la productividad, incrementar el nivel de automatización y reducir los costos de transportación de materiales en la industria 4.0.
Palabras Clave: Análisis por elementos finitos (FEA), modelado, simulación, transporte de materiales, vehículo de guiado automático (AGV).

Abstract
This paper presents the design and implementation of an Automated Guided Vehicle (AGV) devoted to transport materials and tools in industrial facilities. An innovative design inspired in the pre-Hispanic cultures of Mexico is proposed for the AGV. The implementation of a prototype was conducted with highly resistant materials and automated manufacturing processes. A finite element analysis (FEA) shows that the AGV is capable of transporting 700 kg loads without suffering any structural damage and that critical cases involving collisions might cause only minimal harm. A mathematic model is introduced to better understand the equations governing its dynamics. Such model allows the simulation of the AGV’s motion and can be used to improve productivity, increase automation, and reduce transportation costs in smart factories.
Keywords: Automated Guided Vehicle (AGV), finite element analysis (FEA), material transportation, modeling, simulation.

Texto completo:

762-779 PDF

Referencias


AGVek. Chungcheongnam-do, 331-808, South Korea. [Online]. Disponible en: https://www.agvegroup.com/ (último acceso junio 2021)

Campion, G. & Chung, W. Wheeled Robots, Springer Handbook of Robotics, Springer Verlag, Berlin Heidelberg, 391-410, 2008.

Cawood, G. J. & Gorlach I. A. Navigation and Locomotion of a Low-Cost Automated Guided Cart. 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference. Port Elizabeth, South Africa, 2015.

Delgado-Mata, C., Velazquez, R. & Gutierrez, C. A. A Differential-Drive Mobile Robot Driven by an Ethology Inspired Behaviour Architecture, Procedia Technology, Vol. 3, 157-166, 2012.

Del-Valle-Soto, C., Mex-Perera, C., Nolazco-Flores, J. A., Velazquez, R. & Rossa-Sierra, A. Wireless Sensor Network Energy Model and its Use in the Optimization of Routing Protocols, Energies, Vol. 13, No. 3, 728, 2020.

Dematic Co. 756 W Peachtree St NW, Atlanta, GA 30308 USA. [Online]. Disponible en: www.dematic.com/ (último acceso junio 2021)

Ezzat, F. H, Hasouna, A. T. & Ali, W. Friction Coefficient of Rough Indoor Flooring Materials, JKAU: Eng. Sci., Vol.19, No.2, 53-70, 2008.

Garzon-Castro C. L. & Velazquez, R. Fundamentals and Paradigms in the Internet of Things. In: Cardona, M, Solanki, V.K. & García-Cena, C. E. (Eds.), Internet of Medical Things: Paradigm of Wearable Devices, CRC Press, 1-18, 2021.

Hernandez, H., Preza, E., & Velazquez, R. Characterization of a Piezoelectric Ultrasonic Linear Motor for Braille Displays. 2009 IEEE Electronics, Robotics and Automotive Mechanics Conference. Cuernavaca, Mexico, 2009.

Liu, C., Fan, M. & Song, R. A Novel Intelligent and Agile Warehouse System for Energy Meter Storage. 2013 IEEE Third International Conference on Information Science and Technology. Yangzhou, China, 2013.

Liu, F., Li, X. & Wang, Y. Design of Automatic Guided Vehicle Motion Control System Based on Magnetic Navigation. 2018 Chinese Control and Decision Conference. Shenyang, China, 2018.

Logicbus. Prol. Av. Alcalde 1822, Guadalajara, Mexico. [Online]. Disponible en: www.logicbus.com.mx (último acceso junio 2021)

Magos-Rivera, M., Velazquez, R., Gomez, A. S. & Gutierrez, C. A. Design and Construction of a New Door Driving Mechanism for Mexico's City Metro. IEEE Central America and Panama Convention (CONCAPAN XXXVIII). San Salvador, El Salvador, 2018.

Martínez, J. S., Moran, G., Romero, B., Camacho, A., Gutheim, D., Varona, J. & Velazquez, R. Multifunction All-Terrain Mobile Robot IVWAN: Design and First Prototype. 2nd Israeli Conference on Robotics. Herzlia, Israel, 2008.

Martinez, H. & Herrero, D. Autonomous Navigation of an Automated Guided Vehicle in Industrial Environments, Robot Cim-Int Manuf., Vol. 26, No. 4, 296-311, 2010.

Murphy, A. AGV Deep Dive: How Amazon’s 2012 Acquisition Sparked a $10B Market. [Online]. Disponible en: https://loupventures.com/agv-deep-dive-how-amazons-2012-acquisition-sparked-a-10b-market/ (último acceso junio 2021)

Romero, B., Camacho, A., Varona, J., Delgado-Mata, C., Velazquez, R. A Low-Cost Electric Power Wheelchair with Manual and Vision-Based Control Systems. AFRICON 2009, Nairobi, Kenya, 2009.

Taha, Z., Mat-Jizat, J. A. & Ishak, I. Bar Code Detection Using Omnidirectional Vision for Automated Guided Vehicle Navigation. International Conference on Automatic Control and Artificial Intelligence, Xiamen, China, 2012.

Velazquez, R. & Lay-Ekuakille, A. A Review of Models and Structures for Wheeled Mobile Robots: Four Case Studies. 15th International Conference on Advanced Robotics, Tallin, Estonia, 2011.

Velazquez, R. & Gutierrez, C.A. Modeling and Control Techniques for Electric Powered Wheelchairs: An Overview. IEEE Central America and Panama Convention (CONCAPAN XXXIV). Panama, Panama, 2014.

Urzua, M., Mendoza, A., & Gonzalez A. O. Evaluating the Impact of Order Picking Strategies on the Order Fulfilment Time: A Simulation Study, Acta Logist. Int. Sci. J. Logist, Vol. 6, No. 4, 103-114, 2019.

Xu, H., Xia, J., Yuan, Z. & Cao, P. Design and Implementation of Differential Drive AGV Based on Laser Guidance. 2019 3rd International Conference on Robotics and Automation Sciences, Wuhan, China, 2019.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas