DESARROLLO DE UNA ESTACIÓN DE PRUEBA PARA CELDAS DE LITIO 18650 UTILIZANDO ARDUINO Y LABVIEW (18650 LITHIUM BATTERY TESTING STATION USING ARDUINO AND LABVIEW)

Juan Alberto Govea Muñoz, Israel U. Ponce, Delfino Cornejo Monroy, Osslan Osiris Vergara Villegas

Resumen


Resumen
Este trabajo se centra en el estudio de la degradación de la capacidad de las celdas de litio 18650, principalmente en la prueba para determinar la capacidad restante en celdas usadas, obteniendo como parámetro principal su estado de salud. Se presenta la metodología realizada para desarrollar una estación de prueba de baterías que permite recabar datos en tiempo real, los cuales son analizados posteriormente para determinar su posible reutilización. La estación permite probar tres baterías simultáneamente. Las variables que definen la capacidad de cada batería se monitorean en una interfaz desarrollada en LabVIEW que permite almacenar los valores de las variables en tiempo real. Para realizar la adquisición de datos se utilizó una placa de desarrollo de Arduino. Los resultados muestran que es posible identificar correctamente el estado de salud de las baterías con la estación de prueba desarrollada.
Palabras Clave: batería, instrumentación, interfaz, litio.

Abstract
This work focuses on the study of the capacity degradation of 18650 lithium batteries, determining the remaining capacity in used cells and obtaining their state of health as the main parameter. The methodology used to develop a battery test station is presented. This battery test station collect data in real time, which is analyzed to determine its possible reuse. The station allows to test three batteries simultaneously. Each battery is connected to a discharge system to analyze its performance. The variables that define the capacity of each battery are monitored in an interface developed in LabView. An Arduino platform was used to perform the data acquisition. The results show that it is possible to obtain the state of health of the batteries with the developed test station.
Keywords: battery, instrumentation, interface, lithium.

Texto completo:

360-379 PDF

Referencias


Ahmadi, L., Young, S. B., Fowler, M., Fraser, R. A. y Achachlouei, M. A. A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems, Int. J. Life Cycle Assess., vol. 22, no. 1, pp. 111–124, 2017.

Chen, W., Liang, J., Yang, Z., y Li, G. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond. Energy Procedia, 158, pp. 4363-4368. 2019.

Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., y Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation. 2019.

Li, X. Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode, Electrochim. vol. 297, pp. 1109–1120, 2019.

Liu, C., Lin, J., Cao, H., Zhang, Y. y Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Clean. Prod., 2019.

Liu, K., Liu, Y., Lin, D., Pei, A., y Cui, Y. Materials for lithium-ion battery safety. Science Advances, 4(6). 2018.

Liu, K., Shang, Y., Ouyang, Q., y Widanage, W. D. A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Transactions on Industrial Electronics, 68(4), pp. 3170-3180. 2021.

Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), pp. 1063-1069. 2017.

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nature Communications, 11(1). 2020.

Salinas, F., Krüger, L., Neupert, S. y Kowal, J. A second life for li-ion cells rescued from notebook batteries, J. Energy Storage, vol. 24, p. 100747, 2019.

Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., y Wu, B. Lithium-ion battery fast charging: A review. ETransportation. 2019.

Wang, H., Frisco, S., Gottlieb, E., Yuan, R., y Whitacre, J. F. Capacity degradation in commercial Li-ion cells: The effects of charge protocol and temperature, J. Power Sources, vol. 426, octubre del 2018, pp. 67–73, 2019.

Wang, Q., Mao, B., Stoliarov, S. I., y Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 73, pp. 95-131. 2019.

Xu, J., Thomas, H. R., Francis, R. W., Lum, K. R., Wang, J., y Liang, B. A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, vol. 177, no. 2, pp. 512–527, 2008.

Zhang, R., Xia, B., Li, B., Cao, L., Lai, Y., Zheng, W., Wang, H., y Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies, 11(7). 2018.

Zubi, G., Dufo-López, R., Carvalho, M., y Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, pp. 292-308. 2018.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas