CIRCUITO EQUIVALENTE DE THÉVENIN PARA EL MODELADO DE LA BATERÍA DE LITIO (THEVENIN’S EQUIVALENT CIRCUIT FOR LITHIUM BATTERY MODELING)

Alma Delia Aguilar Hernández, Felipe de Jesús González Montañez, Víctor Manuel Jiménez Mondragón, Eduardo Campero Littlewood

Resumen


Resumen
En este trabajo se presenta el modelado del circuito equivalente de Thévenin. Además se presenta una introducción a los tipos de baterías más comunes y sus características en términos de eficiencia. Se describen los modelos que representan el comportamiento de las baterías de litio a través de modelos de estimación, modelos empíricos y modelos de circuitos equivalentes. El modelo del circuito equivalente de Thévenin se realiza con ayuda del paquete de simulación Matlab/Simulink® donde se modela el comportamiento de la batería de litio y la dinámica presente en los parámetros de temperatura, estado de carga y voltaje en terminales por medio de diferentes escenarios de carga y descarga de corriente.
Palabras Clave: batería de litio, circuito equivalente de Thévenin, estado de carga, Matlab/Simulink®, modelado.

Abstract
This paper presents the modeling of Thevenin equivalent circuit. In addition, an introduction to the most common types of batteries and their characteristics in terms of efficiency is presented. Models representing the behavior of lithium batteries are described through estimation models, empirical models, and equivalent circuit models. The model of the Thevenin equivalent circuit is carried out with the help of the Matlab/Simulink® simulation package where the behavior of the lithium battery and the dynamics present in temperature parameters, state of charge and voltage in terminals are modeled by means of different scenarios of charge and discharge of current.
Keywords: equivalent circuit, lithium battery, Matlab/Simulink®, modelling, state of charge.

Texto completo:

146-161 PDF

Referencias


Feng, J., He, Y. L., & Wang, G. F. (2013). Comparison study of equivalent circuit model of Li-Ion battery for electrical vehicles. Research Journal of Applied Sciences, 6(20), 3756-3759.

Fonseca, J. (2011). Celdas, pilas y baterías de Ion-Litio una alternativa para???. Journal Boliviano de Ciencias, 8(22), 40-47.

Fotouhi, A., Auger, D. J., Propp, K., Longo, S., & Wild, M. (2016). A reviewon electric vehicle battery modelling: From Lithium-ion toward LithiumSulphur. Renewable and Sustainable Energy Reviews, 56, 1008-1021

Glavin, M. E., Chan, P. K., Armstrong, S., & Hurley, W. G. (2008, September). A stand-alone photovoltaic supercapacitor battery hybrid energy storage system. In 2008 13th International power electronics and motion control conference (pp. 1688-1695). IEEE

Habib, A. A., Motakabber, S. M. A., & Ibrahimy, M. I. (2019, November). A comparative study of electrochemical battery for electric vehicles applications. In 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON) (pp. 43-47). IEEE.

He, H., Xiong, R., & Fan, J. (2011). Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. energies, 4(4), 582-598.

Huria, T., Ceraolo, M., Gazzarri, J., & Jackey, R. (2012, March). High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells. In 2012 IEEE International Electric Vehicle Conference (pp. 1-8). IEEE.

Hussein, A. A. H., & Batarseh, I. (2011, July). An overview of generic battery models. In 2011 IEEE Power and Energy Society General Meeting (pp. 1-6). IEEE.

Li, P. (2017, November). An improved PNGV modeling and SOC estimation for lithium iron phosphate batteries. In IOP Conference Series: Earth and Environmental Science (Vol. 94, No. 1, p. 012012). IOP Publishing.

Liu, X., Li, W., & Zhou, A. (2018). PNGV equivalent circuit model and SOC estimation algorithm for lithium battery pack adopted in AGV vehicle. Ieee Access, 6, 23639-23647.

Manzetti, S., & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004-1012.

Meng, J., Luo, G., Ricco, M., Swierczynski, M., Stroe, D. I., & Teodorescu, R. (2018). Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Applied sciences, 8(5), 659.

Shamsi, M. H. (2016). Analysis of an electric Equivalent Circuit Model of a Li-Ion battery to develop algorithms for battery states estimation.

Song, S. G., Li, X. P., & Sun, Z. C. (2014). Study on the Charging Characteristics of Lithium-Ion Batteries for Electric Vehicles Regenerative Braking. In Advanced Materials Research (Vol. 853, pp. 389-394). Trans Tech Publications Ltd.

Wan, L. (2019, January). Improvement and simulation test of PNGV equivalent circuit model. In AIP Conference Proceedings (Vol. 2066, No. 1, p. 020001). AIP Publishing LLC.

Zhang, R., Xia, B., Li, B., Cao, L., Lai, Y., Zheng, W.,... & Wang, W. (2018). State of the art of lithium-ion battery SOC estimation for electrical vehicles. Energies, 11 (7),1820.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas