ESTABILIZACIÓN GLOBAL CLF DE SISTEMAS CON ENTRADAS DE CONTROL RESTRINGIDAS A UN CONJUNTO COMPACTO (GLOBAL CLF STABILIZATION OF SYSTEMS WITH CONTROL INPUTS CONSTRAINED TO A COMPACT SET)
Resumen
El objetivo de este documento es diseñar controles de retroalimentación continuos para la estabilización asintótica global (GAS) de sistemas afines, con control restringido a un conjunto (CVS) compacto y convexo. Se resuelve este problema de estabilización con base a un diseño de una función de retroalimentación restringida a la hipercaja y obtenida mediante la teoría CLF. Mediante una "normalización" de esta retroalimentación se obtiene el estabilizador continuo restringido al CVS.
Palabras Clave: Estabilización, función admisible, función Lyapunov.
Abstract
The objective of this document is to design continuous feedback controls for global asymptotic stabilization (GAS) of affine systems, with control restricted to a compact and convex set (CVS). This stabilization problem is solved based on a design of a feedback function restricted to the hyperbox and obtained by means of the CLF theory. By "normalizing" this feedback, the continuous stabilizer restricted to CVS is obtained.
Keywords: Stabilization, Admissible function, Lyapunov function.
Texto completo:
578-591 PDFReferencias
Artstein, Z. Stabilization with relaxed controls. Nonlinear Analysis, Th. Meth. Appl. 7, 1163--1173. 1983.
Curtis, J. W. (2003). CLF-based nonlinear control with polytopic input constraints. In Proc. 42th IEEE Conf. Dec. Control, Maui, HI USA, Dec., 2228-2233.
Leyva, H., J. Solís--Daun & R. Suárez. Global CLF stabilization of systems with control inputs constrained to a hyperbox. SIAM J. Control Optim. 51, 745--766. 2013.
Leyva, H. & J. Solís--Daun. Synthesis of positive controls for the global CLF stabilization of systems. Proc. 48th IEEE Conf. Dec. Control/28th Chinese. Ctrl. Conf., Shanghai, China, 2009, 656-660.
Leyva, H. & J. Solís-Daun, Global CLF stabilization of systems with respect to a hyperbox, allowing the null-control input in its boundary (positive controls). 53rd IEEE Conference on Decision and Control, December 15-17, Los Angeles, California, 2014. Pags 3107-3112.
Malisoff, M. & Sontag, E. D., Universal formulas for feedback stabilization with respect to Minkowski balls. Systems Control Lett., 40, 247-260. 2000.
Rockafellar, R. T., Convex Analysis, 2nd Printing, Princeton University Press, Princeton N. J., 1972.
Saperstone, S. H & Yorke, J. A. (1971). Controllability of linear oscillatory systems using positive controls. SIAM J. Control. Vol. 9.
Solís-Daun J., B. Aguirre, and R. Suárez, Synthesis of regular controls for the global CLF stabilization of nonlinear systems, in Proceedings of the 4th IFAC Symposium on System Structure and Control, Ancona, Italy, 2010, pp. 242--248.
Solís-Daun J., and H. Leyva, On the global CLF stabilization of systems with polytopic control value sets, in: Proc. 18th IFAC World Congress, August 28-Sept. 2, 2011, Milano, Italy, 11042-11047.
Solís-Daun J., Global CLF Stabilization of Nonlinear Systems. Part I: A Geometric Approach---Compact Strictly Convex CVS SIAM J. Control Optim. 51, No. 3, 2013.
Solís-Daun J., Global CLF stabilization of nonlinear systems. Part II: An approximation approach-Closed CVS. SIAM J. Control Optim. 53, No. 2, pp. 645--669. 2015.
Sontag E., Control-Lyapunov functions. Open Problems in Mathematical Systems and Control Theory, V. Blondel, E. Sontag, M. Vidyasagar & J. Willems, eds. Springer, London, 211—216. 1998.
Sontag E., A "universal" construction of Artstein's theorem on nonlinear stabilization, Systems Control Lett., 13, 117-123, 1989.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx