MODELO TERMOELÉCTRICO DE UNA BATERÍA RECARGABLE EN MATLAB-SIMULINK ( THERMOELECTRIC MODEL OF A RECHARGEABLE BATTERY IN MATLAB-SIMULINK)
Resumen
Este artículo presenta la implementación computacional del modelo termoeléctrico de una batería de iones de litio (Li-ion), así como los resultados obtenidos de este modelo bajo distintas condiciones de transferencia de calor por convección. La implementación computacional del modelo desarrollado se realizó usando Matlab/Simulink. El modelo se empleó para investigar el desempeño de la batería, este modelo desarrollado se basó en los parámetros físicos de las baterías eléctricas del Nissan Leaf, i.e. voltaje nominal, capacidad eléctrica, área de convección y masa. La carga demandada de la batería fue 1.5 Amperes a una temperatura ambiente de 20°C durante 3600 segundos. Estas condiciones se mantuvieron para tres diferentes valores de coeficiente de transferencia de calor por convección: 2 y 25 W/m2 K para convección libre, mientras que para convección forzada se usan los valores 25 y 250 W/m2 K. Los resultados correspondientes mostraron valores de entre 31°C y 36°C para la correspondiente temperatura interior de la celda.
Palabras clave: Batería Recargable, Modelo termoeléctrico, Matlab-Simulink
Abstract
This article presents the computational implementation of the thermoelectric model of a lithium-ion (Li-ion) battery, as well as the results obtained from this model under different convective heat transfer conditions. The computational implementation of the developed model was carried out using Matlab / Simulink. The model was used to investigate the performance of the battery, this developed model was based on the physical parameters of the electric batteries of the Nissan Leaf, i.e. nominal voltage, electrical capacity, convection area and mass. The battery charge demanded was 1.5 Amps at an ambient temperature of 20 ° C for 3600 seconds. These conditions were maintained for three different values of heat transfer coefficient by convection: 2 and 25 W / m2 K for free convection, while for forced convection the values 25 and 250 W / m2 K are used. The corresponding results showed values between 31 ° C and 36 ° C for the corresponding internal cell temperature.
Keywords: Rechargeable Battery, Thermoelectric Model, Matlab-Simulink.
Texto completo:
130-140 PDFReferencias
Andreev A.A., Vozmilov A.G. Kalmakov V.A.; Simulation of lithium battery operation under severe temperature conditions. Procedia Engineering 129, 201-206 (2015).
Finegan D.P., Darcy E., Keyser M., Tjaden B., Heenan T.M.M., Jervis R., Bailey J.J., Vo N.T., Magdysyuk O.V., Drakopoulos M., Di Michiel M., Rack A., Hinds G., Brett D.J.L., Shearing P.R.; Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway. Advanced Science, Vol. 5, No. 1, (2018)
Lienhard J.H. IV and Lienhard J.H.V; A Heat Transfer Textbook, Phlogiston Press (2020)
Bergman T.L., Lavine A. S., Incropera F.P., Dewitt D.P.; Fundamentals of Heat and Mass Transfer, John Wiley and Sons (2011)
Christenson M., Loiselle A., Karman D. y Graham L.A.; The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (1): Particulate Matter Emission Rates and Size Distributions. SAE Technical Paper Series, 01-2136 (2007)
Christenson M., Loiselle A., Karman D. y Graham L.A.; The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (2): Fuel Consumption and Gaseous Pollutant Emission Rates. SAE Technical Paper Series, 01-2137 (2007)
Environmental Protection Agency. Dynamometer Drive Schedules: https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules.
Sanguesa J.A., Torres-Sanz V., Garrido P., Martinez F.J., Marquez-Barja J.M.; A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 4, 372–404. (2021)
Pesaran A.,Santhanagopalan S.,Kim G.H.; Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications. National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy13osti/58145.pdf (2013)
Hartmann M., Kelly J.; Thermal Runaway Prevention of Li-ion Batteries by Novel Thermal Management System. IEEE Transportation Electrification Conference and Expo (2018)
Nissan LEAF Teardown: Lithium-ion battery pack structure - MarkLines Automotive Industry Portal. https://www.marklines.com/en/report_all/rep1786_201811
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx