GENERACIÓN DE SERIES PSEUDORANDOM PARA CIFRAR DATOS DE CONSUMO DE ENERGÍA ELÉCTRICA (PSEUDORANDOM SERIES GENERATION TO ENCRYPT ELECTRICAL ENERGY CONSUMPTION DATA)
Resumen
En este artículo se presenta la implementación de un prototipo para el cifrado de datos usando un criptosistema de clave simétrica que cifra los datos mediante la aplicación de generadores eficientes de secuencias pseudoaleatorias que aprovechan el comportamiento caótico de una ecuación logística, es diseñado para generar flujo de claves aplicadas al cifrado/descifrado de una señal de consumo de energía eléctrica. El objetivo del cifrado es el de proporcionar privacidad y confidencialidad al usuario de sus datos de medición en el marco de redes eléctricas inteligentes. Se realizan pruebas experimentales utilizando una señal de energía eléctrica real, los resultados obtenidos demuestran que el proceso de cifrado/descifrado no afectará la eficiencia de codificación, manteniendo una tasa de bits y un bajo consumo de recursos computacionales. Para validar los resultados, éstos se someten a un análisis de seguridad basado en valoración estadística del NIST (Instituto Nacional de Normas y Tecnología), pruebas que son superadas, lo que indica, que la información o los datos quedan criptográficamente protegidos. Se hace una comparación entre resultados simulados y Reales.
Palabras Clave: Criptografía, ecuación logística, pseudoaleatorio, seguridad.
Abstract
Implementation of a prototype for data encryption using a symmetric key cryptosystem is presented in this paper, data are encrypted by applying efficient generators of pseudo-random sequences that take advantage of the chaotic behavior of a logistic equation and it is designed to generate flow of keys applied to the encryption/decryption of an electrical energy consumption signal. The purpose of encryption is to provide privacy and confidentiality to the user of his measurement data within the framework of smart grids. Experimental tests are carried out using a real electrical energy signal, the results obtained show that the encryption / decryption process will not affect the encoding efficiency, maintaining a low bit rate and low consumption of computational resources. To validate the results, they are subjected to a security analysis based on statistical evaluation from the NIST (National Institute of Standards and Technology), tests that are passed, which indicates that the information or data is cryptographically protected. A comparison is made between simulated and real results.
Keywords: Cryptography, logistic equation, Pseudo-random, security.
Texto completo:
1111-1128 PDFReferencias
Al-Haija Q., Tarayrah M., Al-Qadeeb H. & Al-Lwaimi A., (2014). A Tiny RSA Cryptosystem based on Arduino Microcontroller Useful for Small Scale Networks.Procedia Computer Science, 34, pp.639-646.
Badra M. & Zeadally S. (2017). Lightweight and efficient privacy-preserving data aggregation approach for the Smart Grid. Ad Hoc Networks, 64, pp.32-40.
Bassham L., et al. (2018). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST. [Online]. Available: https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic.
Benslimane Y. & BenAhmed K., (2017). Efficient End-to-End Secure Key Management Protocol for Internet of Things. International Journal of Electrical and Computer Engineering (IJECE), 7(6), p.3622.
Borges de Oliveira F., (2018). on privacy-preserving protocols for smart metering systems. springer international pu.
Bose R. & Pathak S., (2006). A novel compression and encryption scheme using variable model arithmetic coding and coupled chaotic system. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(4), pp.848-857.
Carlet C., (2008). On an improved correlation analysis of stream
ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2 (2)
Dazahra M., Elmariami F., Belfqih A. & Boukherouaa J., (2018). A Defense-in-depth Cybersecurity for Smart Substations. International Journal of Electrical and Computer Engineering (IJECE), 8(6), p.4423.
Desai S., Alhadad R., Chilamkurti N. & Mahmood A., (2018). A survey of privacy preserving schemes in IoE enabled Smart Grid Advanced Metering Infrastructure. Cluster Computing, 22(1), pp.43-69.
Guan Z., Si G., Wu J., Zhu L., Zhang Z. & Ma Y., (2017). Utility-Privacy Tradeoff Based on Random Data Obfuscation in Internet of Energy. IEEE Access, 5, pp.3250-3262.
Jiménez Rodríguez M., et al., (2015). Sistema para codificar información implementando varias órbitas caóticas. Ingeniería, Investigation y Tecnología, 16(3), pp.335-343.
Knirsch F., Eibl G. & Engel D., (2018). Error-Resilient Masking Approaches for Privacy Preserving Data Aggregation. IEEE Transactions on Smart Grid, 9(4), pp.3351-3361.
Kong J., Ang L. & Seng K., (2015). A comprehensive survey of modern symmetric cryptographic solutions for resource constrained environments. Journal of Network and Computer Applications, 49, pp.15-50.
Li C., Luo G., Qin K. et al., (2017). An image encryption scheme based on chaotic tent map. Nonlinear Dyn 87, 127–133.
López Hernández J., Díaz Méndez A., Del Río Correa J., Cruz Irisson M. & Vázquez Medina R., (2012). A current mode CMOS noise generator using multiple Bernoulli maps. Microelectronic Engineering, 90, pp.163-167.
Miyazaki Y., Tsuneda A., & Inoue T., (2008). Spreading Sequences with Negative Auto-correlations Generated by LFSRs Based on Chaos Theory of Modulo-2 Added Sequences. In ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, pp. 541-544.
Mrabet Z., Kaabouch N., Ghazi H., (2018). Cyber-security in smart grid: Survey and challenges. Computers & Electrical Engineering, 67, pp.469-482.
Mylrea M., (2017). Smart energy-internet-of-things opportunities require smart treatment of legal, privacy and cybersecurity challenges. The Journal of World Energy Law & Business, 10(2), pp.147-158.
Qin Z., Zhou E., Ding Y., Zhao Y., Deng F. & Xiong H., (2018). Data Service Outsourcing and Privacy Protection in Mobile Internet. Data Service Outsourcing and Privacy Protection in Mobile Internet.
Radwan A., AbdElHaleem S. & Abd-El-Hafiz S., (2016). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research, 7(2), pp.193-208.
Rezk A., Madian A., Radwan A. & Soliman A., (2019). Reconfigurable chaotic pseudo random number generator based on FPGA. AEU - International Journal of Electronics and Communications, 98, pp.174-180.
Robinson C., (2009). Dynamical Systems, Boca Raton, Fla.CRC Press.
Rottondi C. & Verticale G., (2015). Privacy-friendly load scheduling of deferrable and interruptible domestic appliances in Smart Grids. Computer Communications, 58, pp.29-39.
Sandri M., (1996). Numerical calculation of lyapunov exponents. Mathematica Journal, 6(3):78–84.
Soliman M. S., Alahmadi A. A., Maash A. A., & Elhabib M.O., (2017). Design and Implementation of a Real-Time Smart Home Automation System Based on Arduino Microcontroller Kit and LabVIEW Platform. Vol 3(18), pp. 7259-7264.
Tan X., Zheng J., Zou C. & Niu Y., (2016). Pseudonym-based privacy-preserving scheme for data collection in smart grid. International Journal of Ad Hoc and Ubiquitous Computing, 22(2), p.120.
Tonyali S., Cakmak O., Akkaya K., Mahmoud M. & Guvenc I., (2016). Secure Data Obfuscation Scheme to Enable Privacy-Preserving State Estimation in Smart Grid AMI Networks. IEEE Internet of Things Journal, 3(5), pp.709-719.
Xiao D., Liao X. and Wei P., (2009). Analysis and improvement of a chaos-based image encryption algorithm. Chaos, Solitons & Fractals, 40(5), pp.2191-2199.
Zapateiro De la Hoz M., Acho L. and Vidal Y., (2015). An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers. The Scientific World Journal, 2015, pp.1-10.
Zhang Y. & Xiao D., (2013). Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform. Optics and Lasers in Engineering, 51(4), pp.472-480.
Zia. Ur Rahman. GSM Technology: Architecture, Security and Future Challenges. International Journal of Science Engineering and Advance Technology, vol. 5, pp. 70-74, 2017.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx