PROPIEDADES DIELÉCTRICAS DE ACEITES VEGETALES EN CICLOS DE TEMPERATURA (DIELECTRIC PROPERTIES OF VEGETABLE OILS AT TEMPERATURE CYCLES)

Rosario Peñaloza Delgado, Alonso Corona Chávez, José Luis Olvera Cervantes, María Elena Sosa Morales, Tejinder Kaur Kataria

Resumen


Resumen
En este artículo presentamos las propiedades dieléctricas de aceites vegetales durante los ciclos de calentamiento y enfriamiento. Para el IoT (internet de las cosas), la investigación precisa de la información dieléctrica es importante para la optimización en tiempo real de procesos de control industriales, en donde los aceites vegetales pueden ser utilizados como enfriadores líquidos, aislantes dieléctricos, así como en sistemas de freído asistido por microondas. En esta investigación, presentamos la permitividad dieléctrica compleja de aceites vegetales (canola, oliva, soya, y coco) a 2.50 GHz, determinada a través de la técnica de perturbación de cavidad durante un ciclo de temperatura. Las mediciones fueron realizadas con una cavidad cilíndrica, operando en el modo TE111, con un Q descargado de 4,950. Los resultados aportan información del comportamiento de las de las propiedades dieléctricas cuando son sometidas a un ciclo de temperatura y reflejaron curvas de histéresis durante un ciclo completo, que no han sido reportadas en trabajos previos, donde la ruta de enfriamiento es diferente a la ruta de calentamiento debido a los peróxidos en los aceites.
Palabras Clave: Aceites, calentamiento asistido por microondas, IoT, propiedades dieléctricas.

Abstract
In this article we present the dielectric properties of vegetable oils during heating and cooling cycles. For the IoT (internet of things), the precise investigation of dielectric information is important for the real-time optimization of industrial control processes, where vegetable oils can be used as liquid coolers, dielectric insulators, as well as in systems microwave assisted frying. In this investigation, we present the complex dielectric permittivity of vegetable oils (canola, olive, soybean, and coconut) at 2.50 GHz, determined through the cavity disturbance technique during a temperature cycle. Measurements were made with a cylindrical cavity, operating in TE111 mode, with a discharged Q of 4.950. The results provide information on the behavior of the dielectric properties when subjected to a temperature cycle and reflected hysteresis curves during a complete cycle, which have not been reported in previous works, where the cooling path is different from the cooling path. heating due to peroxides in oils.
Keywords: Dielectric properties, IoT, microwave assisted heating, oils.

Texto completo:

1147-1158 PDF

Referencias


Alhegazi A, Zakaria Z, Shairi N. A., Sutikno T., and Alahnomi R. A. Analysis and Investigation of a Novel Microwave Sensor with High Q-Factor for Oil Sensing, Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 3, pp. 1407–1412, 2018.

Amanullah M, Islam SM, Chami S, Ienco G. Analyses of physical characteristics of vegetable oils as an alternative source to mineral oil-based dielectric fluid. IEEE International Conference on Dielectric Liquids, 2005. ICDL 2005, pp. 397-400, Jun 26 2005.

Campos D. C., Dall’Oglio E. L., De Sousa P. T., Vasconcelos L. G., and Kuhne C. A. Investigation of dielectric properties of the reaction mixture during the acid-catalyzed transesterification of Brazil nut oil for biodiesel production, Sci. J. Food Eng., vol. 117, pp. 957–965, 2014.

Faktorová D. Complex Permittivity of Biological Materials Measurement at microwave Frequencies, Meas. Sci. Technol., vol. 7, no. 2, pp. 12–15, 2007.

Hassanein M. M., El-Shami S. M., & Hassan E. M. M., (2003). Changes occurring in vegetable oils composition due to microwave heating. International Journal of Fats and Oils, 54, 343–349. https://doi.org/10.3989/gya.2003.v54.i4.219.

Hernandez Gomez E. S., Olvera Cervantes J. L., Corona Chavez A., and Sosa Morales M. E., (2014). Development of a low cost dielectric permittivity sensor for organic and inorganic materials in the microwave frequency range, 2014 IEEE 9th Iberoam. Congr. Sensors, pp. 1–4, 2014.

Kataria TK, Sosa Morales ME, Olvera Cervantes JL, Corona Chavez A. Dielectric properties of tequila in the microwave frequency range (0.5–20 GHz) using coaxial probe. International journal of food properties. 18;20(sup1):S377-84, 2017.

Kausik Bal, and Kothari V. K. Measurement of dielectric properties of textile materials and their applications. IJFTR vol.34(2), June 2009.

Komarov V., Wang S., & Tang J., (2005). Permittivity and measurements. In 424 Encyclopedia of RF and Microwave Engineering, Kai Chang, pp. 3693–3711.

Latif S. I., Tapia D. F., Herrera D. R., Nepote M. S., Pistorius S., & Shafai L., (2015). A directional antenna in a matching liquid for microwave radar imaging. International Journal of Antennas and Propagation, 1–8.

Li Z, Liu G, Liu L, Lai X, Xu G. IoT-based tracking and tracing platform for prepackaged food supply chain. Industrial Management & Data Systems. 2017 Oct 16.M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.

Praveen kumar, R. K. Akshit Goel, O. Anuj Kumar, and J. Jose Kurian. Dielectric characterization of common edible oils in the higher microwave, Microw. power Electromagn. energy, vol. 53, pp. 48–56, 2019.

Rafiq M, Lv YZ, Zhou Y, Ma KB, Wang W, Li CR, Wang Q. Use of vegetable oils as transformer oils–a review. Renewable and Sustainable Energy Reviews; 52:308-24. 2015.

Salema AA, Yeow YK, Ishaque K, Ani FN, Afzal MT, Hassan A. Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products. 2013.

Sensoy I, Sahin S, Sumnu G., (2013). Microwave frying compared with conventional frying via numerical simulation. Food and bioprocess technology. 2013 Jun 1;6(6):1414-9.

Totten GE, Tensi HM, Lainer K., (1999). Performance of vegetable oils as a cooling medium in comparison to a standard mineral oil. Journal of materials engineering and performance;8(4):409-16.

Venkatesh MS, Raghavan GS., (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering. 2004 May 1;88(1):1-8I. S. Jacobs and C. P. Bean. Fine particles, thin films and exchange anisotropy, in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas