OPTIMIZACION DE CONTROL DE UN SECADOR ROTATORIO PARA PRODUCTOS AGROINDUSTRIALES (CONTROL OPTIMIZATION OF A ROTARY DRYER FOR AGRO-INDUSTRIAL PRODUCTS)

Luis Alberto Astudillo Escobar, Micael Gerardo Bravo Sánchez, Juan José Martínez Nolasco, Adriana Guzmán López

Resumen


Resumen
Este proyecto de tesis tiene como objetivo la optimización de control de un secador rotatorio de productos agroindustriales. El diseño del control integra instrumentación en un secador rotatorio, diseño de sistema de supervisión través del software LabVIEW V15.0, adquisición de datos que se realiza con una tarjeta NI USB-6009. La interfaz de operación permite controlar el grado de temperatura de aire del secador con técnicas de control P, PI, se programan dos modalidades de operación, offline y online, el modo online muestra el comportamiento del proceso y cinéticas de secado de cascara de naranja del prototipo experimental. El modo offline realiza una predicción de tiempo de secado, porcentaje de humedad final y peso, esto aplicando técnicas de PAGE, WEIBULL Y GAB, modelos ampliamente utilizados y comprobados en el secado de materiales orgánicos para la generación de cinéticas de secado. La discusión se centra en la aplicación de la optimización de un secador de productos agroindustriales a través de la instrumentación y aplicación de técnicas de control para mejorar el consumo energético, bases que servirán de análisis para la mejora de secadores rotatorios de alimentos agroindustriales en el futuro.
Palabras Clave: Cinéticas, controladores, instrumentación, modelos y secado.

Abstract
This thesis project aims to optimize the control of a rotary dryer for agro-industrial products. The control design integrates instrumentation in a rotary dryer, supervision system design through LabVIEW V15.0 software, data acquisition performed with a NI USB-6009 card. The operating interface allows controlling the degree of air temperature of the dryer with P, PI control techniques, two modes of operation are programmed, offline and online, the online mode shows the behavior of the process and the kinetics of the orange peel drying process. experimental prototype. The offline mode makes a prediction of drying time, percentage of final moisture and weight, this applying PAGE, WEIBULL and GAB techniques, widely used and proven models in the drying of organic materials for the generation of drying kinetics. The discussion focuses on the application of the optimization of a dryer for agro-industrial products through the instrumentation and application of control techniques to improve energy consumption, bases that will serve as analysis for the improvement of rotary dryers for agro-industrial food in the future.
Keywords: Kinetics, controllers, instrumentation, models and drying.

Texto completo:

64-76 PDF

Referencias


Allen, L., (1992) The mexican food system: traditional and modern. Ecology of food and nutrition. N° 27, pag. 219-234.

Savaresi, S. M., Bitmead, R. R., & Peirce, R. (2001). On modelling and control of a rotary sugar dryer. Control engineering practice, 9(3), 249-266, 2001.

Iguaz, A., Esnoz, A., Martı́nez, G., López, A., & Vırseda, P. (2003). Mathematical modelling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer. Journal of food engineering, 59(2-3), 151-160.

Baxi, H., Patel, A., & Barve, J. (2015, May). Modelling and simulation of dryer system. In 2015 International Conference on Industrial Instrumentation and Control (ICIC) (pp. 1544-1549). IEEE.

Didriksen, H. (2002). Model based predictive control of a rotary dryer. Chemical Engineering Journal, 86(1-2), 53-60.

Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2017). Recent advances in conventional drying of foods. Journal of Food Technology and Preservation, 1(1).

Casso-Hartmann, L. M., & Ing, A. P. R. (2016). EVALUACIÓN DE LA TÉCNICA DE HIDROSECADO EN CÁSCARAS DE NARANJA (Citrus Sinensis)/EVALUATION OF THE DRIYNG HYDRO TECHNIQUE ON ORANGE PEELS (Citrus Sinensis). Vitae, 23, S375.

Cunha, L. M., Oliveira, F. A., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function.

Wang, J., Fang, X. M., Mujumdar, A. S., Qian, J. Y., Zhang, Q., Yang, X. H., ... & Xiao, H. W. (2017). Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry, 220, 145-152.

García Pérez, J. V. (2008). Contribución al estudio de la aplicación de ultrasonidos de potencia en el secado convectivo de alimentos (Doctoral dissertation).

Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters?. Journal of food engineering, 48(1), 19-31.

Bello, M., Oluwamukomi, M. O., & Enujuigha, V. N. (2019). Modeling of the adsorption isotherm of Pleurotus ostreatus using Guggenheim-Anderson-de Boer (GAB) equation. Journal of Engineering and Technology Research, 11(4), 41-46.

Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295.

Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.

Abraham-Juarez, M. D. R., Olalde-Portugal, V., Ceron‐Garcia, A., & Sosa‐Morales, M. E. (2019). Hot air drying kinetics of thin layers of prickly pear fruit paste. Sains Malaysiana, 48(2), 361-367.

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of food engineering, 29(1), 75-97.

Orrego, C. E., Salgado, N., & Botero, C. A. (2014). Developments and trends in fruit bar production and characterization. Critical reviews in food science and nutrition, 54(1), 84-97.

Deng, L. Z., Mujumdar, A. S., Yang, W. X., Zhang, Q., Zheng, Z. A., Wu, M., & Xiao, H. W. (2020). Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 44(1), e14294.

Rosa, D. P., Cantú-Lozano, D., Luna-Solano, G., Polachini, T. C., & Telis-Romero, J. (2015). Mathematical modeling of orange seed drying kinetics. Ciência e Agrotecnologia, 39(3), 291-300.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas