MÉTODOS PARA DETERMINAR EL ÍNDICE DE FATIGA MUSCULAR A TRAVÉS DE SEMG: REVISIÓN DE LA LITERATURA (METHODS OF DETERMINING MUSCLE FATIGUE INDEX THROUGH SEMG: LITERATURE REVIEW)
Resumen
En este artículo de revisión de la literatura se investigan algunos métodos utilizados comúnmente para el análisis de las señales eléctricas generadas en los músculos con la finalidad de determinar la fatiga muscular. El propósito del mismo es ayudar al lector a seleccionar un método sobre el cuál trabajar para poder determinar la fatiga muscular. Se realiza una comparación entre los métodos para determinar cuál es el más apto para su posterior integración en un sistema capaz de advertir sobre la presencia de la fatiga.
Palabras Clave: Análisis, Electromiografía, Fatiga muscular, Métodos, Superficial.
Abstract
Some methods commonly used in the analysis of electrical signals generated by muscles with the purpose to determinate muscle fatigue are investigated in this literature review. The main goal is to guide the reader to select a method with which work to determinate muscle fatigue. A comparison is made between methods to find which is the more useful for a future integration in a system capable of warn on the beginning of muscle fatigue.
Keywords: Electromyography, Muscle fatigue, Signal analysis, Wavelet.
Texto completo:
526-540 PDFReferencias
Al-Mulla, M., Sepulveda, F.,& Colley, M. (2011). Sensors N° 11, 50 pág. 3545-3594, A review of non-invasive Techniques to detect and predict localised muscle fatigue.
Bigland-Ritchie, B.,&Woods, J. (1948). Muscle & Nerve N° 7, 9 pág. 691-699. Changes in muscle contractile properties and neural control during human muscular fatigue.
Chtourou, H., Hammouda, O., Aloui, A.,& Souissi, N. (2013). Novel physiotherapies Vol 3, Issue 3, 10 pág. Effect of Time-of-Day on Muscle Fatigue: A Review.
Aleksandrov, A.,& Knyazeva, V.,(2017). Neuroscience and Behavioral Physiology, Vol 47, N°8, 7 pág. 960-966. Effects of cognitive loading on the development of muscle fatigue.
Idrees, B.,& Farooq, O. (2015).2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC) 5 pág. 267-271. Estimation of muscle fatigue using wavelet decomposition.
Kumar, S. (2006). Revista Brasileira de Fisioterapia, Vol. 10, N° 1, 20 pág. 9-28. Localized muscle fatigue: review of three experiments.
Enoka, R.,& Duchateau, J. (2008).The Journal of Physiology 586.1, 13 pág. 11-23. Muscle fatigue: What, why and how it influences muscle function.
Enoka, R.,& Stuart, D. (1992). Journal of Applied Physiology Vol. 72, 5, 18 pág. 1631-1648. Neurobiology of muscle fatigue.
Sarillee, M., Hariharan, M., Mohd, A., M.I. O., Mohd, A.,& Qi, O. (2014). 5th Control and System Graduate Research Colloquium 6 pág. 187-192. Non-invasive techniques to assess muscle fatigue using biosensors: A Review.
Kos, D., Kerchkofs, E., Nagels, G., D´hooghe, M., & Ilsbroukx, S. (2008). The American Society of Neurorehabilitation Vol. 22, 1, 10 pág. 91-100. Origin of fatigue in multiple sclerosis: Review of the literature.
Hicks, A., Kent-Braun, J.,& Ditor, D. (2001). Excercise and Sport Science Reviews Vol. 29, N° 3, 4 pág, 109-112. Sex Differences in human skeletal muscle fatigue.
Sakurai, T., Toda, M., Sakurazawa, S., Akita, j., Kondo, K.,& Nakamura, Y. (2010). 2010 IEEE/ACIS 9th International Conference on Computer and Information Science, 5 pág. 43-47. Detection of muscle fatigue by the surface electromyogram and its application.
González, M., Malanda, A., Navarro, I., Gorostiaga, E., Mayor, F., Ibañez, J., & Izquierdo, M. (2010). Journal of Electromyography and Kinesiology N° 20, 8 pág, 233-240. EMG spectral indices and muscle power fatigue durong dynamic contractions.
Asghari, M., Hu, H., & Gan, J. (2008). Proceedings of the 30th anual international IEEE EMBS conference, 4 pág, 315-318. Manifestation of fatigue in myoelectric signals of dynamix contractions produced during playing PC games.
Harberg, M. (1981). Ergonomics, Vol. 24, Issue 7, 13 pág, 543-555. Work load and fatigue in repetitive arm elevations.
Laterza, F., & Olmo, G. (1997). Electronic Letters Vol. 33, N° 5, 3 pág, 357-359. Analysis of EMG signals by means of the matched wavelet transform.
Raez, M., Hussain, M., & Mohd, F. (2006). Biological Procedures Online Vol 8, N° 8, 25 pág, 11-35. Techniques of EMG signal analysis: detection, processing, classification and applications.
Kumar, D., Pah, N., & Bradley, A. (2003). IEEE transactions on neural systems and rehabilitation engineering Vol. 11, Issue 4, 7 pág, 400-406. Wavelet analysis of surface electromyography to determine muscle fatigue.
MacIsaac, D., Parker, P., Englehart, K., & Rogers, D. (2006). IEEE Transactions on Biomedical Engineering Vol. 53, Issue 4, 7 pág, 694-700. Fatigue estimation with a multivariable myoelectric mapping function.
Arjunan, S., & Kumar, D. (2008). TENCON 2008 - 2008 IEEE Region 10 Conference 4pág, 1-4. Fractal features based technique to identify subtle forearm movements and to measure alertness using physiological signals (sEMG, EEG).
Sung, P., Zurcher, U., & Kauman, M. (2008). Journal odf Rehabilitation Research & Development Vol. 45, N° 9, 10 pág, 1431-1440. Gender differences in spectral and entropic measures of erector spinae muscle fatigue.
Filligoi, G., Felici, F., Vicini, M., & Rosponi, A. (1997). http://library.med.utah.edu/cyprus/proceedings/medicon98/medicon98.filligoi.giancarlo.pdf. 6 pág. Recurrence Quantification Analysis of Surface Electromyograms.
Kanosue, K., Yoshida, M., Akazawa, K., & Fuji, K. (1979).Japanese Journal of Physiology Vol. 29, 17 pág, 427-443. The Number of Active Motor Units and Their Firing Rates in Voluntary Contraction of Human Brachialis Muscle.
Ravier, P., Buttelli, O., Jennane, R., & Couratier, P. (2005). Journal of Electromyography and Kinesiology Vol. 15, 12 pág, 210-221. An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions.
Morana, C., Ramdani, S., Perrey, S., & Varray, A. (2009). Journal of Neuroscience Methods Vol. 177, 7 pág, 73-79. Recurrence quantification analysis of surface electromyographic signal: Sensitivity to potentiation and neuromuscular fatigue.
Kiryu, T., Saitoh, Y., & Ishioka, K. (1992). IEEE Transactions on Biomedical Engineering Vol. 39, N° 3, 9 pág, 280-288. Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model.
Al-Mulla, M., & Sepulveda, F. (2010). Sensors N° 10, 17 pág, 4838-4854. Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System.
Cochran, W.,Cooley, J., Favin, D., Helms, H., Kaenel, R., Lang, W., Maling, G., Nelson, D., Rader, C., & Welch, P. (1967). Proceedings of the IEEE Vol. 55, N° 10, 11 pág, 1664-1674. What Is the Fast Fourier Transform?
Addison, P. (2005). Physiological measurement N° 26, 46 pág, 155-199. Wavelet transforms and the ECG: a review.
Goojier, J., Abraham, B., Gould, A., & Robinson, L. (1985). International Statistical Review Vol. 53, N°3, 29 pág, 301-329. Methods for Determining the order of an Autoregressive-Moving Average Process: A Survey.
Kaufman, M., Zurcher, U., & Sung, P. (2007). Physica A: Statistical Mechanics and its Applications Vol. 386, Issue 2, 10 pág, 698-707. Entropy of electromyography time series.
Webber, C., & Zbilut, J. (1994). Journal of applied Physiology Vol. 76, Issue 2, 9 pág, 965-973. Dynamical assessment of physiological systems and states using recurrence plot strategies.
Subasi, A., & Kemal, M. (2010). Journal of Medical Systems Vol 34. Issue 4, 9 pág, 777-785. Muscle Fatigue Detection in EMG Using Time-Frequency Methods, ICA and Neural Networks.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx