SIMULACIÓN DE LA CONDUCTIVIDAD DE MODELOS DE MAMA CON SOFTWARE COMSOL (SIMULATION OF CONDUCTIVITY OF BREAST MODELS WITH COMSOL SOFTWARE)

Vicente Castillo Pérez, Juan Prado Olivarez, Marcos Gutierrez López, José Alfredo Padilla Medina

Resumen


Resumen
El cáncer de mama constituye la primera causa de muerte por neoplasia en la mujer en el ámbito mundial. Nuevas técnicas de diagnóstico prebiopsia para uso global se han desarrollado en la última década para reducir el número de pacientes sometidos a procedimiento de biopsia innecesario. Este trabajo implementa la simulación en el software COMSOL Multiphysics para determinar la conductividad en modelos de senos con lóbulos de diferentes tamaños que simulan carcinomas. Para ello se propone tres anillos de 8 electrodos cada uno instalados sobre un molde que simula una copa del brasier. Las pruebas demostraron que se puede obtener un grado de éxito aceptable al momento de ubicar carcinomas con dimensiones mayores o iguales a 0.6 cm de diámetro, a una altura entre 0.2 cm y 3.95 cm con respecto de la base del modelo. Este trabajo abre las puertas a un proyecto futuro donde se puedan llevar pruebas en pacientes; ya que dispone una base para ejecutar las mediciones, que es lo que se debe de esperar y como interpretar los resultados obtenidos.
Palabras Clave: carcinoma, impedancia, mama, simulación.

Abstract
Breast cancer is the leading cause of death from malignancy in women worldwide. New prebiopsy diagnostic techniques for global use have been developed in the last decade to reduce the number of patients undergoing the unnecessary biopsy procedure. This work implements simulation in COMSOL Multiphysics software to determine conductivity in breast models with lobes of different sizes that simulate carcinomas. To do this, three rings of 8 electrodes each are installed on a mold that simulates a bra cup. The tests showed that an acceptable degree of success can be obtained when locating carcinomas with dimensions greater than or equal to 0.6 cm in diameter, at a height between 0.2 cm and 3.95 cm with respect to the base of the model. This work opens the doors to a future project where tests can be carried out on patients; since it has a basis for executing the measurements, what to expect and how to interpret the results obtained.
Keywords: carcinoma, impedance, breast, simulation.

Texto completo:

152-168 PDF

Referencias


Arias, L. A., Macías, F. E., Garces, G. J. y Fernández, G. A. (2019). Cáncer de mama diagnostico precoz Tratamiento Quirúrgico Autoimagen. Recimundo, 3(1), 1024–1049.

Barber, J., Brown, B. y Freeston, I. (1983). Imaging spatial distributions of resistivity using applied potential tomography. Electronics Letters, 19(22), 933–935.

Campisi, M. S., Barbre, C., Chola, A., Cunningham, G., Woods, V. y Viventi, J. (agosto, 2014). Breast cancer detection using high-density flexible electrode arrays and electrical impedance tomography. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Illinois, Chicago.

Cárdenas, J., Bargalló, J., Bautista, V. y Cervántes, G. (2017). Consenso Mexicano sobre diagnóstico y tratamiento del cáncer mamario. GAMO, 16(1), 55-57.

Chakraborty, D., Chattopadhyay, M. y Bhar, R. (2013). Resistivity Imaging of a Phantom with Irregular Inhomogeneities with 32 Silver Electrodes based Sensory System in Two Dimensional Electrical Impedance Tomography. Procedia Technology, 10, 191–199.

Christopher, W., Weiderpass, E. y Stewart, B. (2020). World Cancer Report. Cancer research for cancer prevention. Lyon: International Agency for Research on Cancer.

Gabriel, C., Peyman, A. y Grant, E. H. (2009). Electrical conductivity of tissue at frequencies below 1 MHz. Physics in Medicine and Biology, 54(16), 4863–4878.

Gabriel, S., Lau, R. W. y Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269.

Gowry, B., Shahriman, A. B. y Paulraj, M. (2015). Electrical bio-impedance as a promising prognostic alternative in detecting breast cancer: A review. 2nd International Conference on Biomedical Engineering, ICoBE 2015, 30–31.

Jack, J., Noble, D. y Tsien, R. (1975). Electric current flow in excitable cells. Oxford: Clarendon Press.

Jossinet, J. (1996). Variability of impedivity in normal and pathological breast tissue. Medical and Biological Engineering and Computing, 34(5), 346–350.

Jossinet, J., y Schmitt, M. (1999). A review of parameters for the bioelectrical characterization of breast tissue. Annals of the New York Academy of Sciences, 873, 30–41.

Kusche, R., Malhotra, A., Ryschka, M., Ardelt, G., Klimach, P. y Kaufmann, S. (2015). A FPGA-based broadband EIT system for complex bioimpedance measurements—design and performance estimation. Electronics , 4(3), 507–525.

Lugones Botell, M. y Ramírez Bermúdez, M. (2009). Aspectos históricos y culturales sobre el cáncer de mama. Revista Cubana de Medicina General Integral, 25(3), 160–166.

Morimoto, T., Kinouchi, Y., Iritani, T., Kimura, S., Konishi, Y., Mitsuyama, N., Komaki, K. y Monden, Y. (1990). Measurement of the electrical bio-impedance of breast tumors. European Surgical Research. Europaische Chirurgische Forschung. Recherches Chirurgicales Europeennes, 22(2), 86–92.

Morimoto, Tadaoki, Kimura, S., Konishi, Y., Komaki, K., Uyama, T., Monden, Y., Kinouchi, D. Y. y Iritani, D. T. (1993). A study of the electrical bio-impedance of tumors. Journal of Investigative Surgery, 6(1), 25–32.

Rigaud, B., Morucci, J. P. y Chauveau, N. (1996). Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry. Critical Reviews in Biomedical Engineering, 24(4–6), 257–351.

Sadleir, R. J., Sajib, S. Z. K., Kim, H. J., Kwon, O. I. y Woo, E. J. (2013). Simulations and phantom evaluations of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection. Journal of Magnetic Resonance, 230, 40–49.

Sánchez, R., Schneider, E., Martinez, G., & Fonfach, C. (2018). Cáncer de mama, modalidades terapéuticas y marcadores tumorales. Cuadernos de Cirugia, 22(1), 55-63.

Stojadinovic, A., Nissan, A., Gallimidi, Z., Lenington, S., Logan, W., Zuley, M., Yeshaya, A., Shimonov, M., Melloul, M., Fields, S., Allweis, T., Ginor, R., Gur, D. y Shriver, C. D. (2005). Electrical impedance scanning for the early detection of breast cancer in young women: Preliminary results of a multicenter prospective clinical trial. Journal of Clinical Oncology, 23(12), 2703–2715.

Surowiec, A. J., Stuchly, S. S., Barr, J. R. y Swarup, A. (1988). Dielectric Properties of Breast Carcinoma and the Surrounding Tissues. IEEE Transactions on Biomedical Engineering, 35(4), 257–263.

Zarafshani, A., Bach, T., Chatwin, C. R., Tang, S., Xiang, L. y Zheng, B. (2018). Conditioning Electrical Impedance Mammography System. Measurement: Journal of the International Measurement Confederation, 116, 38–48.

Zhou, C., Chase, J. G., Ismail, H., Signal, M. K., Haggers, M., Rodgers, G. W. y Pretty, C. (2018). Silicone phantom validation of breast cancer tumor detection using nominal stiffness identification in digital imaging elasto-tomography (DIET). Biomedical Signal Processing and Control, 39, 435–447.

Zou, Y. y Guo, Z. (2003). A review of electrical impedance techniques for breast cancer detection. Medical Engineering and Physics, 25(2), 79–90.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas