CARGADOR DE BATERÍAS TRIFÁSICO CON ALTO FACTOR DE POTENCIA PARA VEHÍCULOS ELÉCTRICOS (THREE-PHASE BATTERY CHARGER WITH HIGH POWER FACTOR FOR ELECTRIC VEHICLES)
Resumen
Con el avance de la tecnología se hace más notorio el uso de vehículos eléctricos que constituyen grandes cargas a la red eléctrica y requieren procesos de carga eficientes y con alto factor de potencia. En este artículo se propone un cargador de baterías trifásico constituido por un puente activo doble, un rectificador y un filtro, constituyendo un corrector del factor de potencia operando en modo de conducción discontinua. Para evaluar el desempeño se realizaron simulaciones en lazo cerrado del sistema propuesto, donde se aprecian las bondades del sistema.
Palabras Clave: Cargador de baterías trifásico, vehículos eléctricos, factor de potencia, puente activo doble.
Abstract
The advancement of technology, the use of electric vehicles is increasing and they may constitute a large load in the electrical grid, they require efficient charging processes with high power factor. This work proposes a three-phase battery charger based on a double active bridge, a rectifier, and a filter; with a high power factor since it is operated in discontinuous conduction mode. The performance of the system is evaluated by close loop simulation, where the performance of the system is illustrated.
Keywords: Three-phase battery charger, electric vehicles, power factor, double active bridge.
Texto completo:
467-478 PDFReferencias
Anderson, J. A., Haider, M., Bortis, D., Kolar, J. W., Kasper, M., & Deboy, G. (2019). New synergetic control of a 20kw isolated vienna rectifier front-end ev battery charger. 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics, COMPEL 2019, 1–8. https://doi.org/10.1109/COMPEL.2019.8769657
Choi, S.-W., Oh, S.-T., Kim, M.-W., Lee, I.-O., & Lee, J.-Y. (2020). Interleaved Isolated Single-Phase PFC Converter Module for Three-Phase EV Charger. IEEE Transactions on Vehicular Technology, PP(c), 1–1. https://doi.org/10.1109/tvt.2020.2980878
Choi, S. W., Kim, Y. J., & Lee, J. Y. (2019). Design of 10kW three-phase EV charger with wide output voltage range based on voltage-fed isolated PFC converter. EPE Journal (European Power Electronics and Drives Journal), 29(1), 11–24. https://doi.org/10.1080/09398368.2018.1489483
Ebrahimi, S., Tagliavi, M., Tahami, F., & Oraee, H. (2014). A single-phase integrated bidirectional plug-in hybrid electric vehicle battery charger. IECON Proceedings (Industrial Electronics Conference), 1137–1142. https://doi.org/10.1109/IECON.2014.7048645
Habib, S., Khan, M. M., Hashmi, K., Ali, M., & Tang, H. (2017). A Comparative Study of Electric Vehicles Concerning Charging Infrastructure and Power Levels. Proceedings - 2017 International Conference on Frontiers of Information Technology, FIT 2017, 2017-Janua, 327–332. https://doi.org/10.1109/FIT.2017.00065
Kim, B., Kim, M., & Choi, S. (2016). Single-stage electrolytic capacitor-less AC-DC converter with high frequency isolation for EV charger. 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, 234–238. https://doi.org/10.1109/IPEMC.2016.7512291
Lee, B. K., Kim, J. P., Kim, S. G., & Lee, J. Y. (2016). A PWM SRT DC/DC Converter for 6.6-kW EV Onboard Charger. IEEE Transactions on Industrial Electronics, 63(2), 894–902. https://doi.org/10.1109/TIE.2015.2480384
Lee, J. Y., Yoon, Y. D., & Kang, J. W. (2015). A Single-Phase Battery Charger Design for LEV Based on DC-SRC with Resonant Valley-Fill Circuit. IEEE Transactions on Industrial Electronics, 62(4), 2195–2205. https://doi.org/10.1109/TIE.2014.2351371
Li, C., Zhang, Y., Cao, Z., & Xu, D. (2017). Single-Phase Single-Stage Isolated ZCS Current-Fed Full-Bridge Converter for High-Power AC/DC Applications. IEEE Transactions on Power Electronics, 32(9), 6800–6812. https://doi.org/10.1109/TPEL.2016.2623771
Lu, J., Bai, K., Taylor, A. R., Liu, G., Brown, A., Johnson, P. M., & McAmmond, M. (2018). A Modular-Designed Three-Phase High-Efficiency High-Power-Density EV Battery Charger Using Dual/Triple-Phase-Shift Control. IEEE Transactions on Power Electronics, 33(9), 8091–8100. https://doi.org/10.1109/TPEL.2017.2769661
Marzouk, M., Ferrieux, J. P., Frey, D., & Sarrazin, B. (2014). Considerations to choose an appropriate charger topology for plug-in electric vehicles. 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014, 1–8. https://doi.org/10.1109/EPE.2014.6910974
Saeed, J., Niakinezhad, M., Wang, L., & Fetnando, N. (2019). An integrated charger with hybrid power source using PV array for EV application. Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2019. https://doi.org/10.1109/CPE.2019.8862426
Shi, H., Wen, H., Chen, J., Hu, Y., Member, S., Jiang, L., Chen, G., & Member, S. (2017). Minimum-Reactive-Power Scheme of Dual-Active-Bridge DC – DC Converter With Three-Level Modulated Phase-Shift Control. 53(6), 5573–5586.
Transportation, I., & Technology, V. (2015). IEEE Standard Technical Specifications of a DC Quick Charger for Use with Electric Vehicles IEEE Vehicular Technology Society IEEE Standard Technical Specifications of a DC Quick Charger for Use with Electric Vehicles.
Vazquez, N., Zhu, R., & Liserre, M. (2019). Double Active Bridge Operated in Quasi Discontinuous Conduction Mode. 4899–4904. https://doi.org/10.1109/iecon.2019.8926927
Waltrich, G., Hendrix, M. A. M., & Duarte, J. L. (2016). Three-Phase Bidirectional DC/DC Converter with Six Inverter Legs in Parallel for EV Applications. IEEE Transactions on Industrial Electronics, 63(3), 1372–1384. https://doi.org/10.1109/TIE.2015.2494001
Wang, S., Zheng, Z., Li, C., Wang, K., & Li, Y. (2019). Time Domain Analysis of Reactive Components and Optimal Modulation for Isolated Dual Active Bridge DC/DC Converters. IEEE Transactions on Power Electronics, 34(8), 7143–7146. https://doi.org/10.1109/TPEL.2019.2897007
Wu, F., Feng, F., & Gooi, H. B. (2019). Cooperative Triple-Phase-Shift Control for Isolated DAB DC-DC Converter to Improve Current Characteristics. IEEE Transactions on Industrial Electronics, 66(9), 7022–7031. https://doi.org/10.1109/TIE.2018.2877115
Yaqoob, M., Loo, K. H., & Lai, Y. M. (2019). A Four-Degrees-of-Freedom Modulation Strategy for Dual-Active-Bridge Series-Resonant Converter Designed for Total Loss Minimization. IEEE Transactions on Power Electronics, 34(2), 1065–1081. https://doi.org/10.1109/TPEL.2018.2865969
Yoo, K., Kim, K., & Lee, J. (2013). Single- and Three-Phase PHEV Onboard Battery Charger Using Small Link Capacitor. 60(8), 3136–3144.
Zengin, S., & Boztepe, M. (2016). Trapezoid current modulated DCM AC/DC DAB converter for two-stage solid state transformer. ELECO 2015 - 9th International Conference on Electrical and Electronics Engineering, 1(1), 634–638. https://doi.org/10.1109/ELECO.2015.7394538
Zhao, B., Song, Q., Liu, W., & Sun, Y. (2014). Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Transactions on Power Electronics, 29(8), 4091–4106. https://doi.org/10.1109/TPEL.2013.2289913
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx