CARACTERIZACIÓN DE UN INCLINÓMETRO ÓPTICO PARA DESPLAZAMIENTO VERTICAL DE ESTRUCTURAS CIVILES (CHARACTERIZATION OF AN OPTICAL INCLINOMETER FOR VERTICAL DISPLACEMENT OF CIVIL STRUCTURES)

Juan de Jesús Lara Gordillo, Jorge Luis Camas Anzueto, Rubén Grajales Coutiño, Rafael Mota Grajales, Madaín Pérez Patricio

Resumen


Resumen

En este artículo, se presenta un sensor de inclinación de fibra óptica basado en la modulación de intensidad, la cual se relaciona experimentalmente en función de pérdidas provocadas por macrocurvaturas en una fibra multimodo. El inclinómetro utiliza un engrane-cremallera, que cuando el eje principal del mecanismo sufre una inclinación, se modifica la trayectoria de la luz debido al cambio de curvatura en la fibra óptica. Para la caracterización del sensor se empleó una fuente de luz y un medidor de intensidad para pruebas de laboratorio. Se observó en la configuración experimental propuesta, que a mayor ángulo de inclinación mayor pérdida de intensidad óptica experimenta. Los resultados experimentales mostraron que el inclinómetro proporcionaba un rango de medición de 0 ° a 10° con una sensibilidad de 0.232 nW/°.

Palabras Claves: Fibra multimodo, inclinómetro, macrocurvatura.

 

Abstract

In this article, an optical fiber inclination sensor based on intensity modulation is presented, which is experimentally related to losses caused by macrocurvatures in a multimode fiber. The inclinometer uses a gear-rack, which when the main axis of the mechanism suffers an inclination, the light path is modified due to the change in curvature in the optical fiber. For the characterization of the sensor, a light source and an intensity meter were used for laboratory tests. It was observed in the proposed experimental configuration, that the greater the inclination angle the greater the loss of optical intensity it experiences. Experimental results showed that the inclinometer provided a measuring range of 0 ° to 10 ° with a sensitivity of 0.232 nW/°.

Keywords: Inclinometer, macro-curvature, multimode fiber.


Texto completo:

341-356 PDF

Referencias


Amaral, L. M. N., Frazao, O., Santos, J. L., & Ribeiro, A. L. (2011). Fiber-optic inclinometer based on taper Michelson interferometer. IEEE Sensors Journal, 11(9), 1811-1814.

Chao, C. R., Liang, W. L., & Liang, T. C. (2018). Design and Testing of a 2D Optical Fiber Sensor for Building Tilt Monitoring Based on Fiber Bragg Gratings. Applied System Innovation, 1(1), 2.

Chen, N. K., Feng, Z. Z., Wang, J. J., Liaw, S. K., & Chui, H. C. (2013). Interferometric interrogation of the inclination and displacement of tapered fiber Mach-Zehnder interferometers. IEEE Sensors Journal, 13(9), 3437-3441.

Feng, Z., Gang, T., Hu, M., Qiao, X., Liu, N., & Rong, Q. (2016). A fiber inclinometer using a fiber microtaper with an air-gap microcavity fiber interferometer. Optics Communications, 364, 134-138.

Frazão, O., Falate, R., Fabris, J. L., Santos, J. L., Ferreira, L. A., & Araújo, F. M. (2006). Optical inclinometer based on a single long-period fiber grating combined with a fused taper. Optics Letters, 31(20), 2960-2962.

Farrar, C. R., & Worden, K. (2010). An introduction to structural health monitoring. In New Trends in Vibration Based Structural Health Monitoring (pp. 1-17). Springer, Vienna.

Guo, C., Chen, D., Shen, C., Lu, Y., & Liu, H. (2015). Optical inclinometer based on a tilted fiber Bragg grating with a fused taper. Optical Fiber Technology, 24, 30-33.

Inaudi, D., & Glisic, B. (2002, May). Interferometric inclinometer for structural monitoring. In 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002 (Cat. No. 02EX533) (pp. 391-394). IEEE.

Jung, H., Kim, C. J., & Kong, S. H. (2007). An optimized MEMS-based electrolytic tilt sensor. Sensors and Actuators A: Physical, 139(1-2), 23-30.

Lee, C. L., Shih, W. C., Hsu, J. M., & Horng, J. S. (2014). Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor. Optics express, 22(20), 24646-24654.

Li, C., Li, X., Yu, X., Peng, X., Lan, T., & Fan, S. (2017). Room-Temperature Wide Measurement-Range Optical Fiber Fabry–Perot Tilt

Sensor With Liquid Marble. IEEE Sensors Journal, 18(1), 170-177.

Liang, J., Matsuo, T., Kohsaka, F., Li, X., Kunitomo, K., & Ueda, T. (2008). Fabrication of two-axis quartz MEMS-based capacitive tilt sensor. IEEJ Transactions on Sensors and Micromachines, 128(3), 85-90.

Moura, J. P., Silva, S. O., Becker, M., Rothhardt, M., Bartelt, H., Santos, J. L., & Frazão, O. (2013). Optical inclinometer based on a phase-shifted Bragg grating in a taper configuration. IEEE Photonics Technology Letters, 26(4), 405-407.

Nerou, J. P., & Busto, O. M. G. (1991). Introducción a las telecomunicaciones por fibras ópticas. Trillas.

Peng, B. J., Zhao, Y., Zhao, Y., & Yang, J. (2006). Tilt sensor with FBG technology and matched FBG demodulating method. IEEE Sensors Journal, 6(1), 63-66.

Wang, Y., Zhao, C. L., Hu, L., Dong, X., Jin, Y., Shen, C., & Jin, S. (2011). A tilt sensor with a compact dimension based on a long-period fiber grating. Review of Scientific Instruments, 82(9), 093106.

Xu, H. Y., Zhao, Y. L., Zhang, K., Wang, Z. X., & Jiang, K. (2019). A liquid MEMS inclinometer sensor with improved sensitivity. Sensors and Actuators A: Physical, 285, 369-377.

Yang, R., Bao, H., Zhang, S., Ni, K., Zheng, Y., & Dong, X. (2015). Simultaneous measurement of tilt angle and temperature with pendulum-based fiber Bragg grating sensor. IEEE Sensors Journal, 15(11), 6381-6384.

Yang, Y., Ma, X., Chen, K., Wang, E., Yu, Z., & Yu, Q. (2018). A high-resolution dynamic fiber-optic inclinometer. Sensors and Actuators A: Physical, 283, 305-312.

Yao, B., Feng, L., Wang, X., Liu, W., & Jiao, H. (2015). Micro-grating tilt sensor with self-calibration and direct intensity modulation. Optik-International Journal for Light and Electron Optics, 126(1), 144-147.

Zhong, Z. W., Zhao, L. P., & Lin, H. H. (2006). Development and investigation of an optical tilt sensor. Optics communications, 261(1), 23-28.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas