METODOLOGÍA PARA EL DESARROLLO DE APLICACIONES DE MONITORIZACIÓN REMOTA DE VARIABLES CON IoT (METHODOLOGY FOR THE DEVELOPMENT OF REMOTE MONITORING APPLICATIONS OF VARIABLES WITH IoT)

José Ignacio Vega Luna, Mario Alberto Lagos Acosta, Francisco Javier Sánchez Rangel, José Francisco Cosme Aceves

Resumen


Resumen

Se presenta un método para el diseño de aplicaciones de monitorización remota de variables de procesos usando Internet de las Cosas y las tecnologías que pueden usarse para obtener la mejor solución. El objetivo del trabajo es proponer la metodología que permita determinar los componentes necesarios para el diseño e implantación de la solución adecuada tomando en cuenta las necesidades de la aplicación y tecnologías disponibles. El documento presenta la problemática en la mayoría de ambientes donde es necesaria una solución de este tipo. A continuación, se indica el método para el diseño de la misma y posteriormente se propone la metodología. En la metodología se analizan las principales opciones tecnológicas de hardware y software que pueden usarse tomando en cuenta rendimiento, crecimiento, costo y seguridad. Finalmente se exponen recomendaciones derivadas de la experiencia obtenida en pruebas y resultados de trabajos previamente realizados.

Palabras Claves: Hardware, IoT, monitorización, software, variables.

 

Abstract

This paper presents a method for the design of remote monitoring applications of process variables using the Internet of Things and the technologies that can be used to obtain the best solution. The objective of the work is to propose the methodology that allows determining the necessary components for the design and implementation of the appropriate solution taking into account the needs of the application and available technologies. The document presents the problem in most environments where such a solution is necessary. Next, the method for its design is indicated and then the methodology is proposed. The methodology analyzes the main technological options of hardware and software that can be used taking into account performance, growth, cost and security. Finally, recommendations derived from the experience obtained in tests and results of previously performed work are presented.

Keywords: Hardware, IoT, monitoring, software, variables.


Texto completo:

732-750 PDF

Referencias


Ang, C. Vehicle positioning using WIFI fingerprinting in urban environment. IEEE 4th World Forum on Internet of Things (WF-IoT) Proceedings. Singapore, Singapore. May, pp. 652-657, 2018.

Ashish, B. Temperature monitored IoT based smart incubator. International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) Proceedings. Palladam, India. pp. 497-501, 2017.

Bowen, Z., Feng, W. & Shuai, H. Research on the electrical equipment condition monitoring system architecture based on big data. 2nd International Conference on Control and Robotics Engineering (ICCRE) Proceedings. Bangkok, Thailand. May, pp. 155-159, 2017.

Bröring, A., Ziller, A. & Charpenay, V. The BIG IoT API-Semantically Enabling IoT Interoperability. IEEE Pervasive Computing. Vol. 17, Issue: 4, Dec., pp. 41-51, 2018.

Chen, N., Zhang, X. & Chen, Z. Integrated geosptial sensor web for agricultural soil moisture monitoring. Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics) Proceedings. Istanbul, Turkey. July, pp. 1-5, 2015.

Costa, B., Pires, P. F. & Delicato, F. C. Design and Analysis of IoT Applications: A Model-Driven Approach. IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing Proceedings. Auckland, New Zealand. Aug., pp. 392-399, 2017.

Datta, P. & Sharma, B. A survey on IoT architectures, protocols, security and smart city based applications. 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) Proceedings. Delhi, India. July, pp. 1-5, 2017.

Dhanalaxmi, B. & Naidu, G. A survey on design and analysis of robust IoT architecture. International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) Proceedings. Bangalore, India. July, pp. 375-378, 2017.

Dian, F. J., Yousefi, A. & Lim, S. A practical study on Bluetooth Low Energy (BLE) throughput. IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) Proceedings. Vancouver, BC, Canada. Nov., pp. 768-771, 2018.

Hejazi, H., Rajab, H. & Cinkler, T. Survey of platforms for massive IoT. IEEE International Conference on Future IoT Technologies (Future IoT) Proceedings. Eger, Hungary. Jan., pp. 1-8, 2018.

Huang, X., Zhiwen, L. & Zhu, Y. The System of Temperature Rise Monitoring and Temperature Prediction for Power Equipment. Condition Monitoring and Diagnosis (CMD) Proceedings. Perth, Australia. Nov., pp. 1-5, 2018.

Hurezeanu, I., Nicola, C. I. & Sacerdoţianu, D. Temperature control and monitoring system for power transformer windings using fiber optic sensors. International Symposium on Fundamentals of Electrical Engineering (ISFEE) Proceedings. Bucharest, Romania. July, pp. 1-4, 2016.

Khamphroo, M., Kwankeo, N. & Kaemarungsi, K. Integrating MicroPython-based educational mobile robot with wireless network. 9th International Conference on Information Technology and Electrical Engineering (ICITEE) Proceedings. Phuket, Thailand. Jan., pp. 1-6, 2018.

Kochláň, M., Hodoň, M. & Čechovič, L. WSN for traffic monitoring using Raspberry Pi board. Federated Conference on Computer Science and Information Systems Proceedings. Warsaw, Poland. Sept., pp. 1023-1026, 2014.

Lavric, A. & Popa, V. Internet of Things and LoRa™ Low-Power Wide-Area Networks: A survey. International Symposium on Signals, Circuits and Systems (ISSCS) Proceedings. Iasi, Romania. July, pp. 1-4, 2017.

Li, W. & Kara, S. Methodology for Monitoring Manufacturing Environment by Using Wireless Sensor Networks (WSN) and the Internet of Things (IoT). The 24th CIRP Conference on Life Cycle Engineering. Vol. 61, pp. 323-328, 2017.

Madeira, R. & Nunes, L. A machine learning approach for indirect human presence detection using IOT devices. Eleventh International Conference on Digital Information Management (ICDIM) Proceedings. Porto, Portugal. Jan., pp. 145-150, 2017.

Mezghani, E., Exposito, E. & Drira, K. A Model-Driven Methodology for the Design of Autonomic and Cognitive IoT-Based Systems: Application to Healthcare. IEEE Transactions on Emerging Topics in Computational Intelligence. Vol. 1, Issue: 3. May, pp. 224-234, 2017.

Mosin, S., A Model of LoRaWAN Communication in Class A for Design Automation of Wireless Sensor Networks Based on the IoT Paradigm. IEEE East-West Design & Test Symposium (EWDTS) Proceedings. Kazan, Russia. Nov., pp. 1-6, 2018.

Özkaya, O. & Örs, B., Model based node design methodology for secure IoT applications. 26th Signal Processing and Communications Applications Conference (SIU) Proceedings. Izmir, Turkey. July, pp. 1-4, 2018.

Plathong, K. & Surakratanasakul, B. A study of integration Internet of Things with health level 7 protocol for real-time healthcare monitoring by using cloud computing. 10th Biomedical Engineering International Conference (BMEiCON) Proceedings. Hokkaido, Japan. Dec., 1-5, 2017

Porus, M., Paul, T. A. & Kramer, A. Application of a multi-parameter sensor system for monitoring dielectric insulation of gas mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, Issue: 2. April, pp. 847-851, 2017.

Samsudin, M. F., Mohamad, R. & Izwan, S. Implementation of wireless temperature and humidity monitoring on an embedded device. IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE) Proceedings. Penang, Malaysia. July, pp. 90-95, 2018.

Shende, S., Deshmukh, R. P. & Dorge, P. Performance improvement in ZigBee cluster tree network. International Conference on Communication and Signal Processing (ICCSP) Proceedings. Chennai, India. Feb., pp. 308-312, 2018.

Tao, H., Zhou, J. & Liu, S. A survey of network security situation awareness in power monitoring system. IEEE Conference on Energy Internet and Energy System Integration (EI2) Proceedings. Beijing, China. No., pp. 1-3, 2017.

Vega, J. I., Salgado, G. & Lagos M. A. Video portero usando tarjetas raspberry pi 3. Pistas Educativas. Vol. 40, No. 130. Nov., pp. 1222-1241, 2018.

Vega, J. I., Sánchez, F. J. & Lagos M. A. Acceso a un centro de datos utilizando una tarjeta RFiD y huella digital. Pistas Educativas. Vol. 40, No. 130. Nov., pp. 1242-1258, 2018.

Vega, J. I., Salgado, G. & Lagos M. A. Implantación de una LPWAN para monitoreo de temperatura y humedad en un invernadero. Pistas Educativas. Vol. 40, No. 128. Feb., pp. 1531-1548, 2018.

Vega, J. I., Salgado, G. & Lagos M. A. Inventario de máquinas expendedoras usando una LPWAN. Pistas Educativas. Vol. 40, No. 128. Feb., pp. 1549-1566, 2018.

Vega, J. I., Salgado, G. & Cosme, J. F. Monitoreo de temperatura y humedad en un centro de datos usando transceptores Bluetooth LE. Revista Ciencia, Ingeniería y Desarrollo Tec Lerdo, Vol. 1, No. 4. Oct., pp, 134-140, 2018.

Wu, F., Rüdiger, C. & Redouté, J. M. WE-Safe: A wearable IoT sensor node for safety applications via LoRa. IEEE 4th World Forum on Internet of Things (WF-IoT) Proceedings. Singapore, Singapore. Jan., pp. 1-5, 2018.

Yun-Jie, L., De-Tai, Z. & Yan-Yu, W. HIRFL Water Level Monitoring System Research and Design. Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC) Proceedings. Harbin, China. Dec., pp. 127-130, 2016.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas