SIMULACIÓN DE UN MOLDE DE RESPUESTA TÉRMICA RÁPIDA CON SISTEMA DE ENFRIAMIENTO CONFORMADO MEDIANTE FEM (SIMULATION OF A RAPID THERMAL RESPONSE MOLD WITH CONFORMED COOLING SYSTEM BY FEM)

Hugo Ulises Mandujano Rodríguez, Francisco Javier Cervantes Vallejo, Karla Anhel Camarillo Gómez, Humberto Soto López, José Guadalupe Zavala Villalpando

Resumen


Resumen

En el presente estudio se analiza un molde de respuesta térmica rápida mediante el estudio de campos acoplados, sabiendo que el tiempo de ciclo depende en gran medida del tiempo de enfriamiento, se diseñan y evalúan canales conformados rectangulares utilizando análisis de elementos finitos y análisis térmico de transferencia de calor. Se propone un diseño de sistema de enfriamiento de canales conformados y se analiza térmicamente en dos pasos de carga. Por último, se realiza la evaluación estructural obteniendo los esfuerzos de Von Mises mediante campos acoplados y se observó la reducción del tiempo de calentamiento, así como la reducción del porcentaje de tiempo de enfriamiento del porcentaje total del ciclo, manteniendo los esfuerzos debajo de 500 MPa lo que prolonga la vida útil de los insertos del molde.

 Palabras Clave: Análisis Térmico, Molde de Respuesta Térmica Rápida (MRTR), Moldeo por Inyección, Tiempo ciclo.

 

Abstract

In this paper, a rapid thermal response mold is analyzed by studying coupled fields, knowing that the time depends largely on the cooling time, rectangular conformal channels are designed and evaluated through finite element analysis and thermal transfer heat analysis. A cooling system design of conformal channels is proposed and thermally analyzed in two load steps. Finally, the structural evaluation is carried out, obtaining the Von Mises Stress through coupled fields and it was observed the heating time is reduced, as well as the reduction of cooling time percent of the total cycle time keeping below 500 MPa that the useful life of the mold inserts.

Keywords: Thermal Analysis, Rapid Thermal Respond Mold (MRTR), Injection Mold, Cycle time.


Texto completo:

1136-1156 PDF

Referencias


Lin J. C., Optimum cooling system design of a free-form injection mold using an abductive network, Journal of Materials Processing Technology, Vol. 120, pág. 226-236, 2002.

Wang W., Zhao G., Guan Y., Wu X., Hui Y., Effect of rapid heating cycle injection mold temperature on crystal structures, morphology of polypropylene and surface quality of plastic parts, Journal of Polymer Research, Vol. 22, pág. 84, 2015.

Li C. L., Part segmentation by superquadric fitting-a new approach towards automatic design of cooling system for plastic injection mould, The International Journal of Advanced Manufacturing Technology, Vol. 35, pág. 102-114, 2007.

Wang W., Zhao G., Guan Y., Wu X., Hui Y., Research on a new variotherm injection molding technology and its applications on the molding of a large LCD panel, Polymer-Plastics Technology and Engineering, Vol. 48, pág. 671-681, 2009.

Xu R., Sachs E., Rapid thermal cycling with low thermal inertia tools, Polymer Engineering & Science, Vol. 49, pág. 305-316, 2009.

Zhao G., Wang G., Guan Y., Huiping L., Research and application of a new rapid heat cycle molding with electric heating and coolant cooling to improve the surface quality of large LCD TV panels, Polymers for Advanced Technologies, Vol. 22, pág. 476-487, 2011.

Xiao C. L., Huang H. X., Multiobjective optimization design of heating system in electric heating rapid thermal cycling mold for yielding high gloss parts, Journal of Applied Polymer Science, Vol. 131, 2014.

Xiao C. L., Huang H. X., Development of rapid thermal cycling molding with electric heating and water impingement cooling for injection molding applications, Applied Thermal Engineering, Vol. 73, pág. 712-722, 2014.

Li X. P., Zhao G. Q., Guan Y. J., Ma M. X., Optimal design of heating channels for rapid heating cycle injection mold based on response surface and genetic algorithm, Materials & Design, Vol. 30, pág. 4317-4323, 2009.

Saifullah A. B. M., Masood S. H, Finite Element Thermal Analysis of Conformal Cooling Channels in Injection Moulding, 5th Australasian Congress on Applied Mechanics, Vol. 1, pág. 337-341, 2007.

Cervantes Vallejo J. F., Camarillo Gómez K. A, Pérez Soto G. I, Louvier Hernández J. F, Orozco Mendoza H., Optimización del tiempo de calentamiento en un molde de respuesta rápida térmica mediante FEM-MSR-PSO, Memorias del XXIV Congreso Internacional Anual de SOMIM, Vol. 24, pág 8-17, 2018.

Luchieta G., Fiorotto M., Bariani P.F., Influence of rapid mold temperature variation on surface topography replication and appearance of injection molded parts, Manufacturing Technology, Vol. 61, pág. 539-542, 2012.

Li X., Zhao G., Guan Y., Li H., Research on thermal stress, deformation, and fatigue lifetime of the rapid heating cycle injection mold, Advance Manufacturing Technology, Vol. 45, pág. 261-275, 2009.

Au K. M., Yu K. M., A scaffolding architecture for conformal cooling design in rapid plastic injection moulding, International Journal of Automotive Technology, Vol. 34, pág. 496-515, 2006.

Xiao C. L., Huang H. X., Yang X., Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts, Applied Thermal Engineering, Vol. 100, pág. 478-489, 2016.

Cengel Y. A., Boles M. A., Thermodynamics: an engineering approach, 2002.

Dorigato A., D’Amato M., Pegoretti A., Thermo-mechanical properties of high-density polyethylene-fumed silica nanocomposites: effect of filler surface area and treatment, Journal of Polymer Research, Vol. 19, pág. 9889, 2012.

Ashraf A., Thermal Analysis of Polymer by DSC, Center for Advanced Materials, Vol. 2, pág. 5, 2015.

Standard, ASTM D3641-02, Standard Practice for Injection Molding Test Specimens of Thermoplastic Molding and Extrusion Materials, 2002.

Standard, ASTM D6341-98, Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between –30 and 140°F (–34.4 and 60°C), 1998.

Standard, ASTM D4703-02, Compression Molding Thermoplastic Material into Test Specimens, Plaques, or Sheets, 2002.

Wang G., Zhao G., Li H., Guan Y., Multi-objective optimization design of the heating/cooling channels of the steam-heating rapid thermal response mold using particle swarm optimization, International Journal of Thermal Sciences, Vol. 50, pp. 790-802, 2011.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas