ANÁLISIS DEL VECTOR DE PARK PARA LA DETECCIÓN DE FALLAS ELÉCTRICAS EN EL ESTATOR DE UN AEROGENERADOR DE BAJA POTENCIA (PARK’S VECTOR ANALYSIS FOR ELECTRICAL FAULT DETECTION IN STATOR OF LOW POWER WIND TURBINE)

Raúl Arturo Ortiz Medina, Francisco Javier Villalobos Piña, Victor Arturo Maldonado Ruelas, Ricardo Álvarez Salas

Resumen


En este trabajo se realizó la detección de falla eléctrica de estator de una máquina síncrona de imanes permanentes (PMSM, por sus siglas en inglés) trifásica, funcionando como máquina eléctrica de un aerogenerador de baja potencia a diferentes velocidades. La falla eléctrica a detectar, son los circuitos abiertos provocados por cortos-circuitos entre vueltas de los devanados del estator de la PMSM. La detección de falla se realiza experimentalmente en un banco de pruebas diseñado y construido con base en una máquina de cd y un sistema electrónico de potencia que permite al motor imitar la energía mecánica del viento. Las señales trifásicas de corriente del estator de la PMSM son transformadas al marco de referencia αβ para obtener el módulo del vector de Park de las corrientes. El vector de Park se analiza con la transformada rápida de Fourier (FFT por sus siglas en inglés) para obtener la firma de falla.

In this work, the detection of stator electrical failure of a three-phase synchronous permanent magnet machine (PMSM), as an electric machine of a low power wind turbine, was performed at different speeds. The electrical fault to be detected are the open circuits caused by interturns short circuits of the stator windings of the PMSM. The fault detection is made experimentally in a test bench designed and built based on a dc machine and electronic power system that allows the motor to imitate the mechanical energy of the wind. The current signals of the stator of the PMSM are transformed to the αβ reference frame, in order to obtain the modulus of the Park vector of the currents. The Park vector is analyzed with the fast Fourier transform and thus obtain the fault signature.


Texto completo:

894-909 PDF

Referencias


Abad G., López J., Rodríguez M. A., Marroyo L., Iwanski G. (2011), Doubly Fed Induction Machine, Modelling and Control for Wind Energy Generation, IEEE Press Series on Power Engineering.

Amirat Y., Benbouzid M. E. H., Al-Ahmar E., Bensaker B., Turri S., (2009) A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems, Renewable and Sustainable Energy Reviews, Volume 13, Páginas 2629-2636.

Benbouzid M. E. H. and Kliman G. B. (2003), What stator current processing-based technique to use for induction motor rotor faults diagnosis?, IEEE Transactions on Energy Conversion, vol. 18, no. 2, pp. 238-244.

Cai H., Sun Q., Wood D., (2016) Condition monitoring and fault diagnosis of small permanent magnet generator, Wind engineering, Vol 40(3) 270-282.

Craciunescu A., Ciumbulea G., Media M., (2012) Phase-modulus diagram of instantaneous current’s space phasor as diagnosis tool of induction motor’s stator windings, Internatonal conferece of renewable energies and power quality, Santiago de Compostela, España.

Daneshi-Far Z., Capolino G. A. and Henao H., (2010) Review of failures and condition monitoring in wind turbine generators, Electrical Machines (ICEM), XIX International Conference on, Rome, 2010, pp. 1-6.

Global Wind Energy Council GWEC, Global Report: Annual Market actualizado 25 Abril de 2018 Brussels, http://files.gwec.net/files/GWR2017.pdf, revisado en Junio de 2018.

Grainger J. J. and. Stevenson Jr W. D., Análisis de sistemas eléctricos de potencia, McGraw Hill, USA, 1996.

Grieser B., Sunak Y. and Madlener R., (2015), Economics of small wind turbines in urban settings: An empirical investigation for Germany, Renewable Energy, 78, issue C, p. 334-350.

Gritli Y., Bellini A., Rossi C., Casadei D., Filippetti F. and Capolino G. A., (2017) Condition monitoring of mechanical faults in induction machines from electrical signatures: Review of different techniques, 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, pp. 77-84.

Hosseinzadeh M. and Salmasi F. R., (2016) Fault-Tolerant Supervisory Controller for a Hybrid AC/DC Micro-Grid, in IEEE Transactions on Smart Grid.

Hyers R. W., Mcgowan J. G., Sullivan K. L., Manwell J. F. & Syrett B. C., (2006), Condition monitoring and prognosis of utility scale wind turbines, Energy Materials, 1:3, 187-203.

Ko Y. J., Lee K. B., Lee D. C., Kim J. M., (2012) Fault diagnosis of three parallel voltage source converter for a high-power wind turbine, IET Power Electron., Vol. 5, Iss. 7, pp. 1058–1067.

Lu B., Li Y., Wu X. and Yang Z., (2009) A review of recent advances in wind turbine condition monitoring and fault diagnosis, Power Electronics and Machines in Wind Applications, PEMWA 2009. IEEE, Lincoln, NE, 2009, pp. 1-7.

Lubitz W. D., (2014) Impact of ambient turbulence on performance of a small wind turbine, Renewable Energy, Volume 61, Pages 69-73.

Maldonado-Ruelas V. A., Villalobos-Piña F. J., Sosa-Serna G. A., Alvarez-Salas R., Pazos-Flores F. and Alvarez-Salas J. A., (2016) In-wheel brushless DC motor test-bed for control and fault detection, IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, pp. 1-5.

Migueláñez E. and Lane D., (2010) Predictive diagnosis for offshore wind turbines using holistic condition monitoring, OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, pp. 1-7.

Milanez D. L. and Emanuel A. E. (2003), The instantaneous-space-phasor: a powerful diagnosis tool, in IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 1, pp. 143-148.

Ribrant J. and Bertling L., (2007) Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005 Power Engineering Society General Meeting. IEEE, Tampa, FL, 2007, pp. 1-8.

Tummala A., Kishore R., Dipankur V., Sinha K., Indraja V., Krishna V. H., (2016) A review on small scale wind turbines, Renewable and Sustainable Energy Reviews, Volume 56, Pages 1351-1371.

Weeks M., (2007) Digital signal processing using MATLAB and wavelets, Electrical Engienering Series, Infinity Science Press LLC.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas