MICROACELERÓMETRO MEMS, DISEÑO, ANÁLISIS ESTRUCTURAL Y ELECTROSTÁTICO (MEMS MICROACCELEROMETER, DESIGN, STRUCTURAL AND ELECTROSTATIC)

José Luis González Vidal, Daniel Hernández Moedano, Francisco Morales Jiménez, Juan José Raygoza Panduro

Resumen


En ese trabajo se describe el diseñó de un microacelerómetro de bajo consumo de potencia con tecnología MEMS; se obtuvo un microacelerómetro de 159 μm x 109 μm. Se realizó un mesh por el método de elementos finitos, para su análisis estructural y electrostático, esto con el software COMSOL MULTIPHYSICS 5.1, para comprobar su eficiencia y buen funcionamiento. Debido a que es un sensor de movimiento inercial tipo capacitivo, su principal aplicación es en los disparadores de bolsas de aire de automóviles; el cual podría impactar en la industria automotriz y de consumo.

This paper describes the design of a low power consumption micro-accelerometer with MEMS technology; the dimensions of microaccelerometer computed were 159 μm x 109 μm, a mesh was obtained by the finite element method, for its structural and electrostatic analysis, this with the COMSOL MULTIPHYSICS 5.1 software, to verify its efficiency and good performance. The main application of microaccelerometers is in automobile airbag triggers, which could impact the automotive and consumer industries.


Texto completo:

558-572 PDF

Referencias


Analog Devices (2018). http://www.analog.com. (Analog Devices) Consultado: mayo de 2018, de http://www.analog.com/en/products/sensors-mems/accelerometers.html.

Bassous, E. (1978). Fabrication of Novel Three Dimensional Microstructures by the Anisotropic Etching of (100) and (110) Silicon. EEE Transactions on Electron Devices, 25(10), pp. 1178-1185. doi:10.1109/T-ED.1978.19249.

Basuwaqi, A., Khir, M. H., A. Y. Ahmed, A., Rabih, A. S., Mian, M. U. y Dennis, J. O. (2017). Effects of Frequency and Voltage on the Output of CMOS-MEMS Device. 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). Kuala Lumpur, Malasia: IEEE. doi:10.1109/PRIMEASIA.2017.8280361.

Beeby, S., Ensell, G., Kraft, M. y White, N. (2004). MEMS Mechanical Sensors. Norwood, MA, EE.UU., Artech House, Inc.

Dhineshkaarthi, K., Preeth, S. L. y Kumar, R. (2017). MEMS Cantilever Based Identification of Carcinogenic MZN. 2017 International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE2017) pp. 1-4, Karur, India: IEEE. doi:10.1109/ICEICE.2017.8191863.

González-Vidal, J. L. (2006). Aplicación de Estructuras Micro-Electro-Mecánicas (MEM's) con Tecnología MOS, para Sensores de Parámetros Físicos. tesis doctoral. Ciudad de México, México: Tesis doctoral, CINVESTAV-IPN.

Hayt, W., Kemmerly, J. y Durbin, S. (2011). Engineering Circuits Analysis (8a ed.). Nueva York, EE.UU., McGraw Hill.

Hernández, D. (2009). Desarrollo de Prototipos para Acelerómetros MEMS, Tesis de maestría, UAEH, Mineral de la Reforma, Hidalgo, México.

Khan, A. S. y T. Shanmuganantham. (2017). Arc-Shaped Cantilever Beam RF MEMS Switch for Low Actuation Voltage. Proceedings of 2017 IEEE International Conference on Circuits and Systems (ICCS 2017), pp. 302-305. IEEE. doi:10.1109/ICCS1.2017.8326009.

Kittali, R. M., Sheeparamatti, B. G. y Sheeparamatti, A. (2017). Modeling and Analysis of MEMS Based Accelerometer in Simulink. Smart Technologies for Smart Nation, 2017 International Conference On, pp. 602-606. Bengaluru, India: IEEE. doi:10.1109/SmartTechCon.2017.8358442.

Kuncar, A., Sysel, M. y Urbanek, T. (2017). Calibration of Low-Cost Accelerometer and Magnetometer with Differential Evolution. 2017 International Conference on Military Technologies (ICMT). Brno, República Checa. IEEE. doi:10.1109/MILTECHS.2017.7988795.

Lee, S., Nam, G.-J., Chae, J., Kim, H. y Drake, A. J. (2005). Two-Dimensional Position Detection System with MEMS Accelerometers, Readout Circuitry, and Microprocessor for Padless Mouse Applications. (IEEE, Ed.) IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(10), pp 1167 - 1178. doi:10.1109/TVLSI.2005.859473.

Lu, C.-L. y Yeh, M.-K. (2017). Thermal Stress Analysis of Chip with Pressure Sensor Embedded in Accelerometer. Electronics Packaging (ICEP), 2017 International Conference on, pp. 540-543. Yamagata, Japón. IEEE. doi:10.23919/ICEP.2017.7939442.

Lui, X., Jiang, W., Zhao, L., Jia, C., Yu, M. y Jiang, Z. (2018). Liquid Packaging Effects on Piezoresistive MEMS Accelerometer. Inertial Sensors and Systems (INERTIAL), 2018 IEEE International Symposium on. Lake Como, Italia, IEEE. doi:10.1109/ISISS.2018.8358133.

Maluf, N. y Williams, K. (2004). An Introduction to Microelectromechanical Systems Engineering, Second Edition, (2nd ed.). Norwood, MA, EE.UU., Artech House Inc.

Marra, C. R., Ferrari, F. M., Langfelder, G., Tocchio, A. y Rizzini, F. (2018). Single Resonator, Time-Switched, Low Offset Drift z-Axis FM MEMS Accelerometer. Inertial Sensors and Systems (INERTIAL), 2018 IEEE International Symposium on, pp 1-4, Lago de Como, Italia, IEEE. doi:10.1109/ISISS.2018.8358116.

Nathanson, H. C. y Wickstrom, R. A. (1965). A Resonant‐Gate Silicon Surface Transistor with High‐Q Band‐Pass Properties. Applied Physics Letters, 7(4), pp. 84-86. doi:doi.org/10.1063/1.1754323.

Nevludov, I., Yevsieiev, V., Bortnikova, V. y Miliutina, S. (2017). MEMS Accelerometers Production Technological Route Selection. Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), 2017 14th International Conference The, pp. 424-427, Lviv, Ucrania, IEEE. doi:10.1109/CADSM.2017.7916166.

Petersen, K. (1982). Silicon as a Mechanical Material. Proceedings of the IEEE > Volume: 70 Issue: 5, 70(5), pp. 420 - 457. doi:10.1109/PROC.1982.12331.

Rana, D. y Kaur, M. (2016). Design and Simulation of CMOS MEMS Accelerometer Behavioral Model. Wireless Networks and Embedded Systems (WECON). Rajpura, India: IEEE. doi:10.1109/WECON.2016.7993427.

Rashid, M. H. (2001). Power Electronics Handbook. Pensacola, Florida, EE.UU., Academic Press.

Shahbaz, M. A., Warsi, Z. H., Irshad, S. M., Irshad, S. T. y Jawed, S. A. (2017). Design and Analysis of CMOS MEMS Based Single Proof Mass Tri-axial Capacitive Accelerometer with Readout Integrated Circuit. Electrical Engineering and Computing Technologies (INTELLECT), pp. 1-8, Karachi, Pakistan. doi:10.1109/INTELLECT.2017.8277644

Vijay K. y Varadan, K. J. (2006). Smart Material Systems and MEMS: Design and Development Methodologies. Chichester, Inglaterra: Wiley y Sons Ltd.

Wu, W., Li, Z., Liu, J., Fan, J., y Tu, L. (2017). A Nano-G MEMS Accelerometer for Earthquake Monitoring. Transducers 2017, pp. 599-602, Kaohsiung, Taiwán.

Zhang, Y., Yu, Y., Zhang, Z. y Zhang, X. (2017). Structure and Design of Microgrippers: A Survey. Cybernetics, Robotics and Control (CRC), 2017 2nd International Conference on, pp. 139-143. Chengdu, China. IEEE. doi:10.1109/CRC.2017.9.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas