ESTIMACION DE RADIOENLACE PUNTO A PUNTO DE UN MINI VEHÍCULO AÉREO NO TRIPULADO (POINT TO POINT RADIO LINK ESTIMATION OF A MINI UNMANNED AERIAL VEHICLE)

Andrés Calvillo Téllez, José Cruz Núñez Pérez, Antonio Gómez Roa, J. R. Cárdenas Valdez

Resumen


En este trabajo se presenta un método de predicción del margen de desvanecimiento de la propagación de ondas de radio y el máximo rango, entre un vehículo aéreo no tripulado (UAV) y una estación de control terrena. El rango de comunicación está sujeto, a la normatividad de las regulaciones gubernamentales, que determinan el uso de la banda de frecuencia de 900 MHz, industrial, científico y médica, y restringen la cantidad de energía de la potencia isotrópica radiada efectiva a 36 dBm en esas frecuencias. El procedimiento de predicción se realizó en tres pasos. En primer lugar, se obtienen los datos de telemetría del UAV como altitud, latitud y longitud. Como segundo paso se calcularon: la distancia, los ángulos azimutales, y el libramiento del 60% de claridad de la zona de Fresnel, sobre la línea de vista del radioenlace. Finalmente se determinaron: las pérdidas por propagación en el espacio libre, nivel de recepción de la señal y el margen de desvanecimiento de la señal por condición climática, terreno y curvatura de la tierra. Los resultados muestran que, a partir de la obtención del máximo rango, los parámetros de diseño, el presupuesto del enlace, el análisis de rendimiento, y el margen desvanecimiento, son aceptables para la viabilidad del radioenlace y mejor desempeño del dron.

This paper presents a method of predicting the fade margin of radio wave propagation and the maximum range, between an unmanned aerial vehicle (UAV) and an earth control station. The communication range is subject to the regulations of the governmental laws, which determine the use of the frequency band of 900 MHz, industrial, scientific and medical, and restrict the amount of energy of the effective radiated isotropic power to 36 dBm frequencies. The prediction procedure was carried out in three steps. First, you can get the UAV telemetry data as altitude, latitude, and longitude. As a second step to calculate: the distance, the azimuthal angles, and the clearance of 60% clarity of the Fresnel zone, on the line of sight of the radio link. Finally, it was determined: the percentage of propagation in the free space, the level of reception of the signal and the margin of fading of the signaling by climatic condition, the terrain and the curvature of the earth. The results showed that from obtaining the maximum rank, the design parameters, the budget of the link, the analysis of performance, and the margin of improvement, are acceptable for the viability of the radio link and the best performance of the drone.


Texto completo:

363-376 PDF

Referencias


Andersen, J.B., Rappaport, T.S. and Yoshida, S. (1995) Propagation Measurements and Models for Wireless Communications Channels, IEEE Communications Magazine, January 1995, pp. 42-49.

ARRL UHF/Microwave Experimenter's Manual (American Radio Relay League, 1990).

Belal, R. (2016). Analysis, estimation and prediction of fading for a time-variant UAV-ground control station wireless channel for cognitive communications.

Bertoni, H. L., Honcharenko, W., Maciel, L.R. and Xia, H. H., UHF Propagation Prediction for Wireless Personal Communications, Proceedings of the IEEE, Vol. 82, No. 9, September 1994, pp. 1333-1359.

Campbell Scientific, Inc. (2016). The Link Budget and Fade Margin. App. Note Code: 3RF-F

Cavalcanti, B. J., Cavalcante, G. A., Mendonça, L. M. D., Cantanhede, G. M., de Oliveira, M. M., & D’Assunção, A. G. (2017). A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE and LTE-A at 800 MHz and 2600 MHz. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(3), 708-722.

CCIR (now ITU-R) Report 567-4, Propagation data and prediction methods for the terrestrial land mobile service using the frequency range 30 MHz to 3 GHz (International Telecommunication Union, Geneva, 1990).

CCIR Report 1145, Propagation over irregular terrain with and without vegetation (International Telecommunication Union, Geneva, 1990).

Choudhary, S., & Dhaka, D. K. (2015). Path loss prediction models for wireless communication channels and its comparative analysis. Int. J. Eng. Management & Sciences, 2(3), 38-43.

Dalbakk, L. E. (2014). Antenna System for Tracking of Unmanned Aerial Vehicle (Master's thesis, Institutt for elektronikk og telekommunikasjon).

Doble, J. (1996). Introduction to Radio Propagation for Fixed and Mobile Communications. Artech House.

Elchin, M. (2013). Long-range Communication Framework for Autonomous UAVs (Doctoral dissertation, Université d'Ottawa/University of Ottawa).

Freeman, R.L. (1987). Radio System Design for Telecommunications. Wiley & Sons.

Hall, M.P.M., Barclay, L.W. and Hewitt, M.T. (1996). Propagation of Radiowaves. Institution of Electrical Engineers.

He, R., Zhong, Z., Ai, B., Ding, J., & Guan, K. (2012). Analysis of the relation between Fresnel zone and path loss exponent based on two-ray model. IEEE Antennas and Wireless Propagation Letters, 11, 208-211.

Kakar, J. A. (2015). UAV communications: Spectral requirements, MAV and SUAV channel modeling, OFDM waveform parameters, performance and spectrum management (Doctoral dissertation, Virginia Tech).

Lee, W.C.Y., Mobile Communications Design Fundamentals, Second Edition (Wiley & Sons, 1993).

Mammadov, E. (2013). Long-range Communication Framework for Autonomous UAVs. Doctoral dissertation, Université d'Ottawa/University of Ottawa.

Miller, P. G. (2015). Design of a Remote Person View System for a Long Range UAV. Thesis to obtain the Master of Science Degree in Aerospace Engineering, Instituto Superior Técnico de Lisboa.

Peng, J. (2016). Performance of TCP congestion control in UAV networks of various radio propagation models. International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016.

Venkatasubramanian, S. N. (2013). Propagation channel model between unmanned aerial vehicles for emergency communications.

Yajnanarayana, V., Wang, Y. P. E., Gao, S., Muruganathan, S., & Lin, X. (2018). Interference mitigation methods for unmanned aerial vehicles served by cellular networks. arXiv preprint arXiv:1802.00223.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas