PLATAFORMAS PARA CONTROLADOR ACTIVO LINEAL APLICADO A LA DIRECCIÓN ASISTIDA AUTOMOTRIZ (PLATFORMS FOR LINEAR ACTIVE CONTROLLER APPLIED TO THE AUTOMOTIVE ASSISTED STEERING)

Sergio Sandoval Pérez, Gamaliel Rodríguez González, Luis Alfonso García Mendoza, Jaime Jalomo Cuevas

Resumen


En este artículo se muestra un problema clásico en la teoría de control, el cual es el diseño de una ley de retroalimentación, teniendo el propósito de que la salida de cualquier sistema siga asintóticamente una señal de referencia. En este trabajo, se pretende que la velocidad lateral siga a una maniobra del conductor, pero en sentido contrario. Se propone que el vehículo se encuentra realizando pruebas de manejo conocidas por norma internacional ISO 7401, por ende el problema de la teoría de regulación lineal vía retroalimentación de estados por medio de una función de Lyapunov es la solución idónea a nuestro problema ya que se supone la medición de la velocidad angular de viraje. Los actuadores que integraremos en este artículo serán los frenos () y el sistema frontal activo (AFS, por sus siglas en inglés), por medio de la simulación de Matlab-Simulink-CarSim y una plataforma propia.

Palabra(s) clave: Retroalimentación de estados, velocidad lateral, velocidad angular de viraje, CarSim.

 

Abstract

This article shows a classic problem of control theory, which is the design of a feedback law, it has the purpose that the output of any system follows a reference signal asymptotically. In this paper we aim that the lateral velocity follows a drivers´s maneuver, but in the opposite direction. It is proposed that the vehicle performs driving test knowed by the ISO 7401 international standard, thus, to solve this problem we are going to use the feedback-state lineal theory by means of a Lyapunov function, because it is supposed to measure the yaw velocity. The actuators that we will be integrating in this paper, will be the brakes () and Front Active System (AFS), through simulations in Matlab- Simulink-CarSim and own platform.

Keywords: Feedback state, lateral velocity, yaw velocity, CarSim.

Texto completo:

1964-1981 PDF

Referencias


C. Acosta Lúa, B. Castillo Toledo, S. Di Gennaro, A. Toro. (2007). Nonlinear Robust Regulation of Ground Vehicle Motion, Proceedings of the IEEE Conference on Decision and Control, 3871-3876.

C. Acosta Lúa, B. Castillo Toledo, S. Di Gennaro. (2008). Nonlinear Output Robust Regulation of Ground Vehicle in Presence of Disturbances and Parameter Uncertainties, Proceedings of the IFAC World Congress, 141-146.

C. Acosta Lúa, S. Di Gennaro, M. Sanchez. (2016). An adaptive controller applied to an anti-lock braking system laboratory, Revista DYNA de la Universidad Nacional de Colombia, 83, 69-77.

D. Bianchi, A. Borri, G. Burgio, S. Di Gennaro. (2010). Adaptive Integrated Vehicle Control Using Active Front Steering and Rear Torque Vectoring, International Journal of Vehicle Autonomous Systems, Special Issue on: “Autonomous and Semi-Autonomous Control for Safe Driving of Ground Vehicles, 8, No. 2/3/4, 85-105.

S. Di Cairano, H. E. Tseng, D. Bernardini, A. Bemporad. (2013). Vehicle Yaw Stability Control by Coordinated Active Front Steering and Differential Braking in the Tire Sideslip Angles Domain, IEEE Transactions on Control Systems Technology, 21, No. 4, 1236-1248.

C. Earl Beal y J. Christian Gerdes. (2013). Model Predictive Control for Vehicle Stabilization at the Limits of Handling, IEEE Transactions on Control Systems Technology, 21, No. 4, 1258-1269.

Li Gang, Zong Chang-fu, Zheng Hong-yu, Hong Wei. (2011). Vehicle Active Front Steering and Yaw Moment Integrated Control, 2011 International Conference on Transportation, Mechanical and Electrical Engineering (TMEE), Changchun, China, 787-790.

A. Goodarzi y E. Esmailzadeh. (2007). Design of a VDC System for All-Wheel Independent Drive Vehicles, IEEE/ASME Transactions on Mechatronics, 12, No. 6, 632-639.

N. Hamzah, Y.M. Sam, H. Selamat, M.K. Aripin, M.F. Ismail. (2012). Yaw Stability Improvement for Four-Wheel Active Steering Vehicle using Sliding Mode Control, 2012 IEEE International Colloquium on Signal Processing and its Applications (CSPA), 127-132.

T. L. Lam, H. Qian, Y. Xu. (2010). Omnidirectional Steering Interface and Control for a Four-Wheel Independent Steering Vehicle, IEEE/ASME Transactions on Mechatronics, 15, No.3, 329-338.

K. Nam. (2015). Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles, Sensors-Open Access, 15, No.1, 28385-28401.

H. Ohara y T. Murakami. (2008). A Stability Control by Active Angle Control of Front-Wheel in a Vehicle System, IEEE Transactions on Industrial Electronics, 55, No. 3, 1277-1285.

H. B. Pacejka. (2005). Tyre and Vehicle Dynamics, Elsevier Butterworth.

H. Pan, Y. Zhang, W. Sun. (2014). Robust Tracking Control for Vehicle Lateral Dynamics with Uncertain Parameters and External Nonlinearities, Shock and Vibration, 2014, 12.

R. Rajamani. (2006). Vehicle Dynamics and Control, Springer, New York.

H. Ren, S. Chen, G. Liu, K. Zheng. (2014). Vehicle State Information Estimation with the Unscented Kalman Filter, Advances in Mechanical Engineering, 2014, 11-20.

D. Rubin y S. Arogeti. (2013). Vehicle Yaw Stability Control Using Rear Active Differential via Sliding Mode Control Methods, 2013 Mediterranean Conference on Control & Automation (MED), Platanias-Chania, Crete, Grece, 317-322.

J. Tjonnas y T.A. Johansen. (2010). Stabilization of Automotive Vehicles Using Active Steering and Adaptive Brake Control Allocation, IEEE Transactions on Control Systems Technology, 18, No. 3, 545-558.

Z. Yacine, D. Ichalal, N. Ait-Oufroukh, S. Mammar, S. Djennoune. (2015). Takagi-Sugeno Observers: Experimental Application for Vehicle Lateral Dynamics Estimation, IEEE Transactions on Control Systems Technology, 23, No.2, 754-760.

M. Zakaria, A. Dwijotomo, M. Azman Abdullah, N. Tamaldin. (2014). Development Motor Control Unit for Electronic Steering System Test Rig, 2014 IEEE International Colloquium on Signal Processing and its Applications (CSPA), 42-47.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas