TRANSMISIÓN-RECEPCIÓN DE AUDIO VÍA LUZ VISIBLE
Resumen
Resumen
La comunicación por luz visual o VLC por su acrónimo en inglés (Visual Light Communication), emplea la luz visible proveniente de lámparas fluorescentes, o bien luz de diodos emisores de luz (LED: Light Emitting Diode) para transmitir información. La transmisión de la información se realiza modulando la intensidad de la luz del LED. En el receptor la información es inicialmente recobrada a través de un foto-detector, que suele estar conectado a un dispositivo para la recuperación final de la información. En este artículo se describe una aplicación basada en VLC, para transmitir audio almacenado en una tarjeta micro SD empleando un shield montado sobre un microcontrolador Arduino, y varios módulos (llamados bits) de LittleBits. El emplear componentes modulares que permiten de manera simple su interconexión, facilitó el desarrollo de esta aplicación.
Palabras Claves: Arduino, Audio, LittleBits, SD Shield, VLC.
TRANSMISSION-RECEPTION OF AUDIO VIA VISIBLE LIGHT
Abstract
Communication by visual light or VLC by its acronym in English (Visual Light Communication), uses visible light from fluorescent lamps, or light from light emitting diode (LED) to transmit information. The transmission of information is done by modulating the intensity of the LED light. In the receiver the information is initially recovered through a photo-detector, which is usually connected to a device for the final recovering of the information. This paper describes an application based on VLC, to transmit audio stored in a micro SD card using a shield mounted on an Arduino microcontroller, and several modules (called bits) of LittleBits. The use of modular components that allow simple interconnection, facilitated the development of this application.
Keywords: Arduino, Audio, LittleBits, SD shield, VLC.
Texto completo:
1421-1433 PDFReferencias
Aleksandar Jovicic, Junyi Li and Tom Richardson, Visible light communication: opportunities, challenges and the path to market”. DOI: 10.1109/MCOM.2013: http://ieeexplore.ieee.org/document/6685754/.
Arduino. 2017: https://www.arduino.cc/.
Arduino library for asynchronous playback of PCM/WAV files direct from SD card: https://github.com/TMRh20/TMRpcm.
Banzi Massimo, Fitzgerald Scott, y Guadalupi Arturo, Simple Audio Player: https://www.arduino.cc/en/Tutorial/SimpleAudioPlayer, 2015.
Haas, H., High-speed wireless networking using visible light. SPIE Newsroom. DOI, 2013: http://dx.doi.org/10.1117/2.1201304.004773.
LittleBIts. 2017, https://littlebits.cc/.
Jpiat Jonathan, Arduino Simple Visible Light Communication, 2016: https://github.com/jpiat/arduino/wiki/arduino-simple-visible-light-communication.
Kamsula Pekka, Design and implementation of a bidirectional visible light communication testbed. University of Oulu, Department of Electrical and Information Engineering. Master’s Thesis, 2015, http://jultika.oulu.fi/files/nbnfioulu-201502141097.pdf.
Kwonhyung Lee; Hyuncheol Park, Modulations for Visible Light Communications With Dimming Control. IEEE Photonics Technology Letters, Vol. 23, Issue 16, August. DOI: 10.1109/LPT.2011.2157676, 2011, http://ieeexplore.ieee.org/document/5773477/.
Sherman, J., How LED Light Bulbs could replace Wi-Fi. Digital Trends, 2013: http://www.digitaltrends.com/mobile/light-bulb-li-fi-wireless-internet/.
SoX - Sound eXchange: http://sox.sourceforge.net/.
TED Ideas worth spreading, Harald Haas: Wireless data from every light bulb, 2011: http://www.ted.com/talks/harald_haas_wireless_data_from_every_light _bulb.
Tsonev, D., Videv, S. and Haas, H, Light fidelity (Li-Fi): towards all-optical networking. Proc. SPIE (Broadband Access Communication Technologies VIII) 9007 (2). DOI, December 2013: http://dx.doi.org/10.1117/12.2044649.
Vincent, J., Li-Fi revolution: internet connections using light bulbs are 250 times faster than broadband: http://www.independent.co.uk/news/ science /li-fi-revolution-internet-connections-using-light-bulbs-are-250-times-faster-than-broadband-8909320.html, 2013.
Wikipedia, Visible Light Communication, 2017: https://en.wikipedia.org/wiki/ Visible_light_communication.
Yingjie He, Liwei Ding, Yuxiang Gong, and Yongjin Wang, Real-time Audio & Video Transmission System Based on Visible Light Communication. Optics and Photonics Journal, 2013: https://www.scirp.org/journal/PaperInformation .aspx?PaperID=34961.
Yildirim Guray, Ozen Ozgur, Yuksel Heba, y Inci M Naci. 2016. A low Cost Li-Fi Communication Setup, 2016: http://ab.org.tr/ab17/bildiri/99.pdf.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx