DISEÑO DE UN PROTOTIPO DE EXOESQUELETO PARA REHABILITACIÓN DE MANO

Berith Atemoztli de la Cruz Sánchez, Manuel Arias Montiel, Esther Lugo González

Resumen


Resumen

En el presente artículo se muestra el diseño y el análisis cinemático de un prototipo de exoesqueleto para la rehabilitación de mano. El dispositivo se diseña para que sea capaz de desarrollar movimientos independientes en cada uno de los dedos, tomando en cuenta la antropometría de personas mexicanas y considerando factores de ergonomía, funcionalidad, diseño para el ensamble y la manufactura. Como resultado se presenta el prototipo de exoesqueleto para rehabilitación de mano, indicando los materiales utilizados, así como el análisis cinemático de los dedos. El diseño es evaluado mediante simulaciones numéricas en MATLAB® para el análisis cinemático del exoesqueleto, mostrando su espacio de trabajo.

Palabra(s) Clave: Diseño mecánico, Exoesqueleto, Rehabilitación.

 

DESIGN OF AN EXOSKELETON PROTOTYPE FOR HAND REHABILITATION


Abstract

The present article shows the design of an exoskeleton prototype for hand rehabilitation. The device has been designed to develop independent movement in each finger and taking into account the Mexican people’s anthropometry and considering ergonomic factors, functionality, design for assembly and for manufacturing. As results we present the prototype of exoskeleton for hand rehabilitation, indicating the used materials, as well as the kinematic analysis of the fingers. The design is evaluated by numerical simulations in MATLAB® for the exoskeleton kinematic analysis, showing its workspace.

Keywords: Exoskeleton, Mechanical design, Rehabilitation.


Texto completo:

96-111 PDF

Referencias


Balasubramanian S., Klein J., and Burdet E. Robot-assisted rehabilitation of hand function. Current Opinion in Neurology, 23(6):661-670, 2010.

Chiri, A., Vitiello, N., Giovacchini, F., Roccella, S., Vecchi, F. and Carrozza, M. C. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Transactions on Mechatronics, 17(5):884-894, October 2012.

Connelly, L., Jia, Y., Toro, M. L., Stoykov, M. E., Kenyon, R. V. and Kamper, D. G. A pneumatic glove and immersive virtual reality environment for hand rehabilitative trai-ning after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5):551-559, 2010.

Delph, M. A., Fischer, S. A., Gauthier, P. W., Luna, C. H. M., Clancy, E. A. and Fischer, G. S. A soft robotic exomusculature glove with integrated semg sensing for hand rehabilitation. In Proc. IEEE Int Rehabilitation Robotics (ICORR) Conf, pp. 1-7, 2013.

Fontana M., Fabio, S., Marcheschi, S., and Bergamasco, M. Haptic hand exoskeleton for precision grasp simulation. Journal of Mechanisms and Robotics, 5(4):041014, 2013.

Fu Y., Zhang Q., Zhang F., and Gan Z. Design and development of a hand rehabilitation robot for patient-cooperative therapy following stroke. In Mechatronics and Automation (ICMA), 2011 International Conference on, pp. 112-117, 2011.

Instituto Nacional de Estadística y Geografía. http://www.inegi.org.mx. 2016. Consultado [26/11/2016].

Iqbal, J., Khan, H., Tsagarakis, N. G., and Caldwell, D. G. A novel exoskeleton robotic system for hand rehabilitation. Conceptualization to prototyping. Biocybernetics and Biomedical Engineering, 32(2):79-89, 2014.

JASE Systems. http://www.jacesystems.com/. 2016.

Lambercy O., Dovat L., Gassert R., Burdet E., Leong Teo C., and Milner T. A haptic knob for rehabilitation of hand function. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3):356-366, 2007.

Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J. Towards a soft pneumatic glove for hand rehabilitation. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1512-1517, 2013.

Sandoval Gonzalez O., Jacinto Villegas J., Herrera Aguilar I., Portill Rodriguez O., Tripicchio P., Hernandez Ramos M., Flores Cuautle A., and Avizzano C. Design and development of a hand exoskeleton robot for active and passive rehabilitation. International Journal of Advanced Robotic Systems, 13(66):1-12, 2016.

Ullman, D. G. The mechanical design process, chapter Product Evaluation: Design for cost, manufacture, assembly and other measures, pages 315-362. McGraw-Hill New York, 4 ed., 1992.

Ulrich K. T. and Eppinger S. D. Diseño y desarrollo de productos: enfoque multidisciplinario. McGraw-Hill, 2004.

UNAM. http://www.dgcs.unam.mx. UNAM. 2016.

Unluhisarcikli, O., Weinberg, B., Sivak, M., Mirelman, A., Bonato, P. and Mavroidis, C. A robotic hand rehabilitation system with interactive gaming using novel electro-rheological fluid based actuators. In Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 1846-1851, 2010.

Vitia. http://www.vitia.es/. 2015.

Zhang F., Hua L., Fu Y., Chen H., and Wang S. Design and development of a hand exoskeleton for rehabilitation of hand injuries. Mechanism and Machine Theory, 73:103-116, 2014.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas