DINÁMICA Y CONTROL DE UN ROBOT PARALELO 3-RPS

Norma Celeste Ruiz Hidalgo, Andrés Blanco Ortega, Arturo Abúndez Pliego, Jorge Colín Ocampo, Wilberth Melchor Alcocer Rosado, Manuel Arias Montiel

Resumen


Resumen

En el presente artículo se propone una nueva configuración de un robot paralelo de 3 grados de libertad (gdl) con configuración revoluta-prismática-esférica (RPS), el cual genera 2 movimientos de rotación y uno de traslación. La diferencia respecto a los robots paralelos 3-RPS que se han propuesto radica en la orientación de los actuadores. Por otra parte, se presenta el análisis cinemático inverso y directo, así como un modelo matemático dinámico aproximado. Se presentan algunos resultados de simulación para validar los modelos matemáticos obtenidos.

Palabra(s) Clave: Cinemática inversa, configuración RPS, modelo dinámico, Robot Paralelo.

 

DYNAMICS AND CONTROL OF A PARALLEL ROBOT 3-RPS

 

Abstract

In this paper, a new configuration of a parallel robot of 3 degrees of freedom (DOF) with revolute-prismatic-spherical (RPS) configuration is proposed, which generates 2 movements of rotation and one of translation. The difference with regard to the parallel robots 3-RPS that have been proposed lies in the orientation of the actuators. On the other hand, the inverse and direct kinematic analysis, as well as an approximate dynamic mathematical model is presented. Some simulation results are presented to validate the mathematical models obtained.

Keywords: Dynamic model, inverse kinematics, parallel robot, RPS configuration


Texto completo:

518-542 PDF

Referencias


Alici, G., Gursel, Gallardo-Alvarado J., Rodriguez-Castro, R., and (2012). “A Novel Three Degrees of Freedom Partially Decoupled Robot with Linear Actuators Linear Actuators.” Robotica 30: 467–75.

Cappel, K. (1967). Motion Simulator.

Clavel, R. (1990). Device for the Movement and Positioning of an Element in Space. Patente US 4 976 582

Gough, V E, and S G Whitehall. (1945). Universal Tyre Test Machine.

Gwinnett, J. E. (1931). Amusement Devices. 680.

Hunt, K.H. (1978). “Kinematic Geometry of Mechanisms.” Clarendon Press, Oxford.

Izaguirre, E., Hernández L., Rubio E., J. Prieto P., Urquijo O. (2011). Análisis Cinemático Y Control Articular Aplicado a Simulador de Movimiento de Estructura Paralela. RIELAC Vol.XXXII: 1–12.

Izaguirre, E., Hernández L., Rubio E., J. Prieto P., and Hernández A., (2011). Control Desacoplado de Plataforma Neumática de 3-GDL Utilizada Como Simulador de Movimiento. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 8(4): 345–56.

Jiayin, X., Yi, L. (2008) Computer Simulation for a Real-Time Process of Machining on a 3D Free Surface by Using a Spatial 3-UPRR Parallel Robot, in 2008 International Conference on Computer and Electrical Engineering, pp. 470–474.

Lukanin, Vladimir. (2005). “Inverse Kinematics, Forward Kinematics and Working Space Determination of 3 Dof Parallel Manipulator with S-P-R Joint Structure.” Periodica Polytechnica Mechanical Engineering 49(1): 39–61.

McCallion, H. and D.T. Pham. (1979). “The Analysis of a Six Degrees of Freedom Work Station for Mechanized Assembly.” In: Proc. of 5th World Congress on theory of machines and mechanisms, Montreal: 611–616.

Merlet, J.P., (2006). Parallel Robots, Second. Netherlands.

Niu, X. M., Gao, G. Q., Liu, X. J., & Bao, Z. Da. (2013). Dynamics and control of a novel 3-DOF parallel manipulator with actuation redundancy. International Journal of Automation and Computing, 10(6), 552–562. https://doi.org/10.1007/s11633-013-0753-6

Pollard, W. L. 1940. Spray Painting Machine.

Rad, C., Manic, M., Bălan, R., and Stan S., (2010). Real time Evaluation of Inverse Kinematics for a 3-RPS Medical Parallel Robot Usind dSpace Platform, pp. 48–53.

Ruiz Hidalgo, N.C., Blanco Ortega, A., Abúndez Pliego, A., Colín Ocampo, J., Arias Montiel, M. (2016). Design and Control of a Novel 3-DOF Parallel Robot. In 2016 International Conference on Mechatronics, Electronics and Automotive Engineering Design, 2016 International Conference on Mechatronics, Electronics and Automotive Engineering Design, 66–71.

Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G. (2009) A High-performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation, The International Journal of Robotics Research, Vol. 28, No. 9, pp. 1216–1227 DOI: 10.1177/0278364909104221

Sismfc W., Tiemin L. I., and Guanghong D. (2003). Parallel Mechanisms with Two or Three Degrees of Freedom. Tsinghua Science and Technology.

Stewart, D. 2006. A Platform with Six Degrees of Freedom. ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196) 180(1965): 371–86.

Tai-ke ,Y. A. O., Xi, Z., Feng, Z., Li-min, Z., and Yong, W. (2012. )Accuracy Synthesis of a 3-RPS Parallel Robot Based on Manufacturing Costs, in 31st Chinese Control Conference, pp. 5168–5172.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas