REVISIÓN DEL ESTADO DEL ARTE DE LA FABRICACIÓN DE MULTIMATERIALES POR MEDIO DE IMPRESIÓN 3D
Resumen
Resumen
La impresión 3D es una tecnología revolucionaria cuyas aplicaciones pueden ser muy diversas, dada la capacidad de generar objetos con geometrías complejas y la combinación de diferentes materiales. Por eso es relevante revisar el estado del arte sobre la evolución de la impresión 3D para comprender su impacto en el desarrollo tecnológico y encontrar nuevas posibilidades de aplicación, como la impresión de materiales multimateriales.
Palabras clave: Impresión 3D, multimateriales, polímeros.
REVIEW OF THE STATE OF THE ART OF THE MANUFACTURE OF MULTIMATERIALS BY MEANS OF 3D PRINTING
Abstract
3D printing is a revolutionary technology whose applications can be very diverse given the ability of generating objects with complex geometries and combining different materials. That is why it is relevant to review the state of the art on the evolution of 3D printing to understand its impact on technological development and find new possibilities of application, such as the printing of multimaterials.
Keywords: 3D printing, Multimaterials, Polymers.
Texto completo:
441-451 PDFReferencias
Campbell, T. A., e Ivanova, O. S. (2013). 3D printing of multifunctional nanocomposites. Nanotoday, 8(2), pág. 119-120.
Columbus, L. (2017). The state of 3D printing 2017: https://www.forbes.com/sites/louiscolumbus/2017/05/23/the-state-of-3d-printing-2017/#2efc5afe57eb.
Columbus, L. (2016). The state of 3D printing 2016: https://www.forbes.com/sites/louiscolumbus/2016/06/08/the-state-of-3d-printing-2016/#6b597b981313.
Cross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., y Spence, D. M. (2014). Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry, 86, pág. 3240-3253
Feng, D., Dingshan, Y., Liming, D., Ganguli, V. V., y Roy, A. K. (2011). Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Nerworks for High-Performance Capacitance. Chemistry of Materials.
Kokkinis, D., Schaffner, M. y Studart, A. R. (2015). Multimaterial magnetically assisted 3D printing of composite materials. Narute Communications, 6.
Levy, G. N., Schindel, R. y Kruth, J. P. (2007). Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. Elsevier, 52(2), pág. 589-609.
Melnikova, R., Ehrmann, A., y Finsterbusch, K. (2014). 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. Materials Science and Engineering, 62.
Rocha, C. C., Torrado, A. R., y Roberson, D. A. (2014) Novel ABS-Based binary and ternary polymer blends for material extrusion 3D printing. Journal of Materials Research.
Sanatgar, R. H., Campagne, C., y Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, pág. 551-563.
Yuan, Z., Wentong, S., Gang, N., Xueyan, S., Zhongzheng, S., Guowei, X., Bo, Z., Yening, C., y Chengyang, T. (2017). 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Materials & Design.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx