ESTUDIO DE LOS INVERSORES CON APLICACIÓN EN FUENTES DE SOLDADURA (STUDY OF INVERTERS WITH APPLICATION IN WELDING POWER SOURCES)
Resumen
En el presente artículo se realiza un análisis exhaustivo de los inversores utilizados en aplicaciones de soldadura de arco, destacando la implementación de inversores resonantes conectados en serie con tanques resonantes. Estos tanques están compuestos por elementos pasivos y presentan diversas topologías, siendo las configuraciones LCL serie y CLL serie-paralelo las más destacadas para esta aplicación.
Asimismo, se examinan otros estudios que, aunque no utilizan tanques resonantes, presentan inversores con diferentes topologías innovadoras. Este artículo ofrece una visión integral de las distintas estrategias y configuraciones de inversores empleadas, subrayando sus ventajas y desafíos en el contexto de la soldadura de arco. Los resultados y discusiones presentados proporcionan una valiosa perspectiva sobre las tendencias actuales y futuras en el diseño de fuentes de soldadura, contribuyendo al avance y optimización de esta tecnología en aplicaciones industriales, con el fin de ofrecer referencias de diseño para posteriormente el diseño y fabricación de fuentes de soldadura de alta eficiencia y confiabilidad.
Palabras Claves: Corrector del factor de potencia, Corriente directa, Distorsión harmónica total, Inversor, Tanque resonante.
Abstract
In this article, an exhaustive analysis of inverters used in arc welding applications is conducted, highlighting the implementation of resonant inverters connected in series with resonant tanks. These tanks are composed of passive elements and exhibit various topologies, with the series LCL and series-parallel CLL configurations being the most notable for this application.
Additionally, other studies are examined that, although not using resonant tanks, present inverters with different innovative topologies. This article provides a comprehensive overview of the various inverter strategies and configurations employed, emphasizing their advantages and challenges in the context of arc welding. The results and discussions presented offer valuable insights into current and future trends in the design of welding power sources, contributing to the advancement and optimization of this technology in industrial applications, with the aim of providing design references for the subsequent design and manufacture of highly efficient and reliable welding power sources.
Keywords: Direct current, Inverter, Power factor corrector, Resonant tank, Total harmonic distortion.
Texto completo:
PDFReferencias
Altanneh, N. S., Uslu, A., Aydemir, M. T., Design of a series resonant converter GMAW welding machine by using the harmonic current technique for power transfer. Electronics (Switzerland), vol. 8, no. 2, febrero 2019.
Bardin, V., Borisov, D., Zemskov, A., А new class of welding machines. International Conference on Actual Problems of Electronics Instrument Engineering, octubre 2012.
Bellec, Q., Le Claire, J. C., Benkhoris, M., Coulibaly, P., Power factor correction and DC voltage control limits for arc welding application using pulsed current. IECON 2018, vol. 44th, octubre 2018.
Bellec, Q., Le Claire, J. C., Benkhoris, M. F., Coulibaly, P., A new robust digital non-linear control for power factor correction—arc welding applications. Energies, vol. 14, issue 4, MDPI AG, febrero 2021.
Brezovnik, R., Ritonja, J., Derivation of Analytical Expressions for Fast Calculation of Resistance Spot Welding System Currents. Mathematics, vol. 12, issue 16, MDPI, agosto 2024.
Casanueva, R., Azcondo, F. J., Díaz, F. J., Brañas, C., TIG welding machines: A design for multiple two-phase resonant converter modules. IEEE Industry Applications Magazine, vol. 17, no. 5, pp. 53-58, septiembre 2011.
Casanueva, R., Brañas, C., Diaz, F. J., Azcondo, F. J., Ferreño, D., Setien, J., Characterization of an energy efficient pulsed current TIG welding process on AISI 316 and 304 stainless steels. Heliyon, vol. 9, issue 9, Elsevier Ltd, septiembre 2023.
Das, J., Halder, D., Rejman, M., Design and Analysis of Soft Switching PWM DC-DC Power Converter with High-Frequency Transformer Link for Portable Arc Welding Machine. Symposium TENSYMP, 10 ed., junio 2020.
Fan, S., Cai, B., Wang, Z., Analysis and Design of LLC Resonant Converter for Electron Beam Welding Filament Power Supply. International Conference on Electrical Machines and Systems, 3rd ed., Busan, Korea, 2013.
Kar, A., Ghosh, K., Sengupta, M., Barman, B., Analysis and design of efficient SiC-based load-resonant converter with advanced features for arc welding applications. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2021.
Kar, A., Nanda, A., Mainak, S., Design, analysis, fabrication and practical testing of a lab developed power converter prototype in electric arc welding. National Power Electronics Conference (NPEC), Pune, India, pp. 373, 2017.
Kar, A., Sengupta, M., Design, analysis and experimental validation of a variable frequency silicon carbide-based resonant-converter for welding applications. Sādhanā, 2020.
Lai, Y. S., Su, Z. J., Chang, Y. T., Novel Phase-Shift Control Technique for Full-Bridge Converter to Reduce Thermal Imbalance under Light-Load Condition. IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1651-1659, marzo 2015.
Madhulingam, R., Design and development of improved power quality based micro-butt welding power supply. IET Power Electronics, vol. 10, no. 7, pp. 746-755, junio 2017.
Mikno, Z., Stepien, M., Analysis of welding conditions at synchronous operation of resistance welding machines. International Journal of Advanced Manufacturing Technology, vol. 133, issue 3-4, pp. 1915-1927, Springer Science and Business Media Deutschland GmbH, julio 2024.
Narula, S., Singh, B., Bhuvanewari, G., PFC bridgeless converter for welding power supply with improved power quality. IEEE International Conference on Power Electronics, Drives and Energy Systems, pp. 213, 2014.
Navarro-Crespin, A., Casanueva, R., Azcondo, F. J., Performance improvements in an arc-welding power supply based on resonant inverters. IEEE Transactions on Industry Applications, vol. 48, no. 3, pp. 888-894, 2012.
Navarro-Crespin, A., Lopez, V. M., Casanueva, R., Azcondo, F. J., Digital control for an arc welding machine based on resonant converters and synchronous rectification. IEEE Transactions on Industrial Informatics, vol. 9, issue 2, pp. 839-847, mayo 2013.
Paul, A. K., Design of continuous-duty high-power converter for multi-purpose welding applications. e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, Elsevier Ltd, diciembre 2023.
Shklovski, J., Janson, K., Development of constant-power source for arc welding. Biennial Baltic Electronics Conference, vol. 13th, octubre 2012.
Villegas, P. J., Diaz, J., Pernia, A. M., Martinez, J. A., Nuno, F., Prieto, M. J., Filament power supply for electron beam welding machine. IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1421-1430, marzo 2015.
Wang, J. M., Wu, S. T., Yen, S. C., Chiu, H. J., A simple inverter for arc-welding machines with current doubler rectifier. IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5278-5281, noviembre 2011.
Wu, K., Wang, Y., Cao, X., Zhan, J., Hong, X., Yin, T., GMAW power supply based on parallel full-bridge LLC resonant converter. International Journal of Electronics, vol. 109, issue 12, pp. 2135-2157, Taylor and Francis Ltd., 2022.
Zeng, Z., LLC resonant converter topologies and industrial applications -A review. Chinese Journal of Electrical Engineering, vol. 6, issue 3, pp. 73-84, Institute of Electrical and Electronics Engineers Inc., septiembre 2020.
Zhang, J., Chen, S., Zhao, H., Yu, Y., Liu, M., Designing a Multi-Output Power Supply for Multi-Electrode Arc Welding. Electronics (Switzerland), vol. 12, no. 7, abril 2023.
Zhao, W., Jiang, Y., Wu, J., Huang, Y., Zhu, Y., An, J., Wan, C. A., Space High-Voltage Power Module. Frontiers in Energy Research, vol. 9, Frontiers Media S.A., abril 2021.
Zhou, Y., Qi, B., Zheng, M., Cong, B., A Novel DC Bias Suppression Strategy for Single-Phase Full-Bridge DC-DC Arc Welding Converter. Electronics, febrero 2021.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx