EVALUACIÓN DEL RENDIMIENTO DE BATERÍAS DE ION-LITIO Y PLOMO-ÁCIDO EN SISTEMAS DE ALMACENAMIENTO DE ENERGÍA (PERFORMANCE EVALUATION OF LITHIUM-ION AND LEAD-ACID BATTERIES IN ENERGY STORAGE SYSTEMS)

Hector Javier Jarquin Flores, Alfredo Cruz Valdiviezo, Adiv Gonzalez Muñoz, Noé Pérez Arreortúa, Rubén Doroteo Castillejos, Carlos Mauricio Lastre Domínguez

Resumen


Resumen
La transición hacia fuentes de energía sostenibles y menos contaminantes es una prioridad urgente en el panorama energético actual. La energía solar, especialmente mediante sistemas fotovoltaicos interconectados, se presenta como una solución prometedora. Para maximizar su aprovechamiento, es esencial seleccionar baterías adecuadas para el almacenamiento de energía. Este estudio compara simulaciones de sistemas de almacenamiento construidos por baterías de ion-litio y plomo-ácido en términos de carga, descarga y eficiencia durante un año. Los resultados destacan la superioridad de las baterías de ion-litio en eficiencia y durabilidad, alcanzando un 93% de capacidad kWh, en comparación con un 87% de las baterías de plomo-ácido. Esto las convierte en una opción atractiva para sistemas que requieren alta fiabilidad y larga vida útil. Sin embargo, las baterías de plomo-ácido son una alternativa rentable en escenarios con restricciones presupuestarias. Se concluye que la elección de cada tipo de batería depende de múltiples factores, como la complejidad del sistema, la capacidad económica y el horizonte temporal del proyecto, ya sea a corto, mediano o largo plazo.
Palabras Clave: Almacenamiento de energía, Análisis comparativo, Baterías de ion-litio, Baterías de plomo-ácido, Sistemas fotovoltaicos interconectados.

Abstract
The urgent shift to sustainable and less polluting energy sources is a key priority in the current energy landscape. Solar energy, particularly through interconnected photovoltaic systems, holds significant promise. To maximize its potential, selecting suitable batteries for energy storage is essential. This study compares lithium-ion and lead-acid batteries in terms of their charging, discharging, and efficiency over a year. The results emphasize lithium-ion batteries' superior efficiency and durability, which achieve a capacity of 93% kWh compared to 87% for lead-acid batteries. This makes lithium-ion batteries an appealing option for systems that require high reliability and a long life. However, lead-acid batteries are a cost-effective alternative in scenarios with budget constraints. In conclusion, the choice of battery type depends on various factors, including system complexity, economic capacity, and the project's time horizon, whether short, medium, or long-term.
Keywords: Comparative analysis, Energy storage, Interconnected photovoltaic systems, Lead-acid batteries, Lithium-ion batteries.

Texto completo:

PDF

Referencias


Alcaide-Godínez I., Bai F., & Castellanos R., (2022). Simulation based FFR Requirement Identification Approach for Battery Energy Storage System. 2022 IEEE Sustainable Power and Energy Conference (iSPEC) 1–5. https://doi.org/10.1109/iSPEC54162.2022.

Bello, K. A., et al., (2024). Digital twin modeling for smart car battery. In 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG) (pp. 1–9). Omu-Aran, Nigeria. https://doi.org/10.1109/SEB4SDG60871.2024.10629956.

Chehab, M. H., Salah, C. B., Falama, R. Z., Tlija, M., y Rabhi, A., (2023). Comparative Analysis of Energy Storage Technologies for Microgrids. International Transactions on Electrical Energy Systems, 1–12. https://doi.org/10.1155/2023/6679740.

Chen T., Jin Y., Lv H., Yang A., Liu M., Chen B., Xie Y., y Chen Q., (2020). Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University 26(3) 208–217. https://doi.org/10.1007/s12209-020-00236-w.

Doe J., (2020). El futuro del almacenamiento de energía: Baterías de ion-litio vs. plomo-ácido. Primera edición. Editorial Energía Renovable, Ciudad de México, México. ISBN: 978-3-16-148410-0.

Hannan M. A., Wali S. B., Ker P. J., Rahman M. S. A., Mansor M., Ramachandaramurthy V. K., Muttaqi K. M., Mahlia T. M. I., y Dong Z. Y., (2021). Battery energy-storage system: A review of technologies optimization objectives constraints approaches and outstanding issues. Journal of Energy Storage 42 103023. https://doi.org/10.1016/j.est.2021.103023.

He, Z., Huang, Y., Liu, H., Geng, Z., Li, Y., Li, S., Deng, W., Zou, G., Hou, H., & Ji, X., (2024). Anode materials for fast-charging sodium-ion batteries. Nano Energy, 129(Part A), 109996. https://doi.org/10.1016/j.nanoen.2024.109996.

Khanahmadi, A., Mozaffarilegha, M., Manthouri, M., & Ghaffarpour, R., (2021). A novel economic method of battery modeling in stand-alone renewable energy systems to reduce life cycle costs. Journal of Energy Storage, 44(Part B), 103422. https://doi.org/10.1016/j.est.2021.103422.

Ko, G., Jeong, S., Park, S., Lee, J., Kim, S., Shin, Y., Kim, W., & Kwon, K., (2023). Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries. Energy Storage Materials, 60, 102840. https://doi.org/10.1016/j.ensm.2023.102840.

Naderi, M., Palmer, D., Smith, M. J., Ballantyne, E., Stone, D. A., Foster, M., Gladwin, D., Khazali, A., Al-Wreikat, Y., Cruden, A. J., y Fraser, E., (2024). Techno-Economic Planning of a Fully Renewable Energy-Based Autonomous Microgrid with Both Single and Hybrid Energy Storage Systems. Energies, 17(4), 788. https://doi.org/10.3390/en17040788.

Nitta, N., Wu, F., Lee, J. T., & Yushin, G., (2015). Li-ion battery materials: Present and future. Materials Today, 18(5), 252–264. https://doi.org/10.1016/j.mattod.2014.10.040.

Njeh K., Zdiri M. A., Ben Ammar M., Rabhi A., y Ben Salem F., (2023). Energy Management of an Autonomous Photovoltaic System under Climatic Variations. Engineering Technology and Applied Science Research 13(1) 9849–9854. https://doi.org/10.48084/etasr.5375.

Makola, C., Le Roux, P. L., y Jordaan, J., (2023). Comparative Analysis of Lithium-Ion and Lead–Acid as Electrical Energy Storage Systems in a Grid-Tied Microgrid Application. Applied Sciences, 13(5), 3137. https://doi.org/10.3390/app13053137.

Walkowiak, S., Baraniak, M., Wachsmann, M., & Lota, G., (2024). Effect of absorptive glass mat soaking method on electrical properties of VRLA batteries. Energy, 296, 131124. https://doi.org/10.1016/j.energy.2024.131124.

Sarker, Md. T., Mohammed, H. S. M. H., Shern, S. J., Ramasamy, G., y Farid, F. A., (2024). Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability. Energies, 17(10), 2345. https://doi.org/10.3390/en17102345.

Scrosati B. , Garche J., (2016). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048.

Shi, N., Chen, Z., Niu, M., He, Z., Wang, Y., y Cui, J., (2022). State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification. Journal of Energy Storage 45 103518. https://doi.org/10.1016/j.est.2021.103518.

Solomon, M., (2016). Energy Storage Systems for Renewable Energy Integration. Journal of Renewable Energy 11(3) 342–353. https://doi.org/10.1016/j.renene.2016.07.030.

Yudhistira, R., Khatiwada, D., y Sanchez, F., (2022). A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production, 131999. https://doi.org/10.1016/j.jclepro.2022.131999.

Zhang, Z., Ramadass, P., (2012). Lithium-Ion Battery Systems and Technology. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_663.

Zhao, Q., Xu, T., Liu, K., Du, H., Zhang, M., Wang, Y., Yang, L., Zhang, H., Wang, X., & Si, C., (2024). Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Materials, 71, 103605. https://doi.org/10.1016/j.ensm.2024.103605.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas