OPTIMIZACIÓN DEL MODELO DE UNA CELDA DE COMBUSTIBLE MEDIANTE UN ALGORITMO DE INTELIGENCIA COMPUTACIONAL (FUEL-CELL MODEL OPTIMIZATION USING A COMPUTATIONAL INTELLIGENCE ALGORITHM)
Resumen
El desarrollo de la tecnología del hidrógeno ha cobrado especial relevancia como una solución para aumentar la producción de energía eléctrica, ya que es posible su producción mediante celdas de combustible. Existen diferentes tecnologías de celdas de combustible, entre las cuales se encuentran las celdas de combustible de membrana de intercambio protónico (PEMFC, por sus siglas en inglés). Uno de los factores a considerar en la mejora de una PEMFC consiste en maximizar el voltaje generado por este dispositivo y reducir las pérdidas de activación, óhmicas y por concentración a las que se les conoce como irreversibilidades. El modelo matemático de irreversibilidades es no lineal y multidimensional, lo que hace compleja la tarea de su optimización. En este artículo se propone el uso de un algoritmo bioinspirado de inteligencia computacional para la optimización del modelo de una PEMFC denominado optimizador de enjambre de partículas. Los resultados obtenidos en este trabajo muestran una mejora en la determinación de los valores óptimos del modelo de irreversibilidades que maximizan el voltaje de una PEMFC con respecto a los reportados en la literatura.
Palabras Clave: Celda de combustible, Inteligencia computacional, Optimización, PEMFC, PSO.
Abstract
The development of hydrogen technology has gained special relevance as a solution to the production of electric energy, since its production is possible through fuel cells. There are different fuel cell technologies, among which are the proton exchange membrane fuel cells (PEMFC). One of the factors to consider in the improvement of a PEMFC is to maximize the voltage generated by this device and reduce the activation, ohmic and concentration losses, which are known as irreversibilities. The mathematical model of irreversibilities is non-linear and multidimensional, which makes the task of its optimization complex. In this article, the use of a bio-inspired computational intelligence algorithm for the optimization of the PEMFC model called particle swarm optimizer is proposed. The results obtained in this work show an improvement in the determination of the optimal values of the irreversibility model that maximize the voltage of a PEMFC with respect to those reported in the literature.
Keywords: Computational intelligence, Fuel cell, Optimization, PEMFC, PSO.
Texto completo:
PDFReferencias
Alireza Askarzadeh, Alireza Rezazadeh, A groupin-based global harmony search algorithm for modeling of proton exchange membrane fuel cell, Energy, vol. 36, N. 8, pp. 5047-5053, 2011.
Askarzadeh A., Optimization of PEMFC model parameters with a modified particle swarm optimization, International Journal of Energy Research, pp. 1258-1265, 2010.
Askarzadeh A., Parameter estimation of fuel cell polarization curve using BMO algorithm, International Journal of Hydrogen Energy, vol. 38, nº 35, pp. 15405-15413, 2013.
Barbir F., PEM fuel cells. Theory and Practice, United States of America: Elsevier Academic Press, 2005.
Barbosa R., et al, Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell catalyst layer, Journal of Power Sources, pp. 1248-1257, 2011.
Birge B., PSOt - a particle swarm optimization toolbox for use with Matlab, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03, pp. 182-186, 2003.
Chaohua Dai, et al, Seeker optimization algorithm for global optimization: A case study on, Electrical Power and Energy Systems, vol. 33, pp. 369-376, 2011.
Del Valle Y., et al, Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems, IEEE Transactions on Evolutionary Computation, vol. 12, no. 2, pp. 171-195, 2008.
Eberhart R., A new optimizer using particle swarm theory, Proc. 6th Int. Symp. Micro Machine and Human Science (MHS), pp. 39-43, 1995.
Going Z. L., Particle swarm optimization to solving the economic dispatch considering the generator constraints, IEEE Trans. Power Systems, vol. 18, N. 3, pp. 1187-1195, 2003.
Hoogers G., Fuel Cell Technology Handbook, Miami, 2013.
International Energy Agency. Key World Energy Statistics 2016. IEA, Paris.
Kennedy J., Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
Nicoletti G., et al, A technical and environmental comparison between hydrogen and some fossil fuels, Energy Conversion and Management, vol. 49, N. 7, pp. 1820-1831, 2015.
Nikolas K. Landin, Bret C. Windom, Evaluating the efficiency of a proton exchange membrane green hydrogen generation system using balance of plant modeling. International Journal of Hydrogen Energy, Volume 57, 29 February 2024, Pages 1273-1285, https://doi.org/10.1016/j.ijhydene.2024.01.128.
Outeiro M. T., et al, A parameter optimized model of a proton Exchange Membrane fuel cell including temperature effects, Journal of Power Sources, vol. 185, N. 2, pp. 952-960, 2008.
Phuangpornpitak N., et al, A study of particle swarm technique for renewable energy power systems, Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), Chiang Mai, Thailand, pp. 1-6, 2010.
Pilatowsky I., et al, Cogeneration Fuel Cell-Sorption Air Conditioning Systems, Springer, 2011.
Uday K. Chakraborty, et al, PEM fuel cell modeling using differential evolution, Energy, vol. 40, N. 1, pp. 387-399, 2012.
Yong-Son Chen, Huei Peng, Predicting current density distribution of proton exchange membrane fuel cells with different flow field designs, Journal of power sources, vol. 4, N. 196, pp. 1992-2004, 2011.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx