DISEÑO, CONSTRUCCIÓN Y CARACTERIZACIÓN DE UN MONITOR DE CO2 PARA LA CALIDAD DEL AIRE DE INTERIORES Y VENTILACIÓN, COMPATIBLE CON TRES SENSORES, CON INTEGRACIÓN IOT, AUTOPRUEBA Y AUTODIAGNÓSTICO (DESIGN, BUILDING AND CHARACTERIZATION OF A CO2 MONITOR FOR INDOOR AIR QUALITY AND VENTILATION, TRI-SENSOR COMPATIBLE, WITH IOT INTEGRATION, SELF-TESTING, AND SELF-DIAGNOSIS)

Guillermo Ramírez Zúñiga, Guillermo Barrios del Valle, Guadalupe Huelsz Lesbros, Héctor Daniel Cortés González

Resumen


Resumen
Se presenta un monitor de CO2 para evaluar la calidad del aire interior y la ventilación, compatible con tres sensores de CO2, lo que permite adaptarse según la disponibilidad de componentes en situaciones como la pandemia COVID-19. El monitor de CO2 está integrado a IoT, con autodiagnóstico. Cuenta con alarmas visuales y audibles para diferentes niveles de CO2. El diseño del circuito electrónico y su carcasa garantizan una producción y ensamblaje que se puede llevar a cabo en cualquier laboratorio de electrónica. El modo de configuración permite a los usuarios configurar el acceso a Internet y la conectividad IoT. Al iniciar, el monitor realiza una prueba de autodiagnóstico para la resolución de problemas. Experimentos controlados validaron la precisión y fiabilidad del monitor. Pruebas en un aula demostró su practicidad y efectividad para identificar zonas mal ventiladas. Toda la información para recrear el monitor se encuentra en un repositorio público.
Palabras Clave: Dióxido de carbono, ESP8266, IoT, NDIR, Ventilación.

Abstract
A CO2 monitor to evaluate indoor air quality and ventilation is presented. The monitor is compatible with three CO2 sensors, is low-cost, and easy to manufacture. It has IoT integration, self-test, and self-diagnostic capabilities. Additionally, it includes visual and audible alarms for different CO2 levels. The design of the electronic circuit and casing ensures easy production and assembly. An IoT-enabled NodeMCU board facilitates remote monitoring and data storage through ThingsBoard. The configuration mode allows users to set up Internet access and IoT connectivity. Upon startup, the monitor performs a software test for the buzzer and RGB LED and provides diagnostic messages for troubleshooting. Controlled experiments validated the monitor's accuracy and reliability. A pilot study in a classroom demonstrated its practicality and effectiveness, highlighting the importance of adequate ventilation. All information to replicate the CO2 monitor is in a public repository.
Keywords: Carbon dioxide, ESP8266, IoT, NDIR, Ventilation.

Texto completo:

PDF

Referencias


ASTM International. ASTM D6245-12, Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation, 2012.

Barrios, G., Ramírez, G., Huelsz, H., Cortés, H., (2022). Monitor_co2_pistas_educativas. https://github.com/lata-mas/Monitor_co2_pistas_educativas.

Bhagat, R.K., Davies-Wykes, M.S., Dalziel, S.B., and Linden, P.F. Effects of ventilation on the indoor spread of COVID-19. Journal of Fluid Mechanics, 903, 2020.

Courchesne, A., CO2.click, maker-edition CO2, 2023.

International WELL Building Institute, (2021). Air quality monitoring and feedback — WELL feature library. http://https://standard.wellcertified.com/air/air-quality-monitoring-and-feedback.

Lednicky, J.A., Lauzardo, M., Fan Z.H., Jutla A., Tilly, T.B., Gangwar, M., Usmani, M., Shankar, S.N., Mohamed, K., Eiguren-Fernandez, A., Stephenson, C.J., Alam, M., Elbadry, M.A., Loeb, J.C., Subramaniam, K., Waltzek, T.B., Cherabuddi, K., Morris, J.G. and Wu Ch.Y., (2020). Viable SARSCoV- 2 in the air of a hospital room with COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.08.03.20167395.

Peng, Z. and Jimenez, J.L., (2020). Exhaled CO2 as COVID-19 infection risk proxy for different indoor environments and activities. medRxiv. https://doi.org/10.1101/2020.09.09.20191676.

Satish, U., Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., and Fisk, W.J. Is CO2 an indoor pollutant? direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, 120(12):1671–1677, 2012.

Shah, Y., Kurelek, J.W., Peterson, S.D., and Yarusevych, S. Experimental investigation of indoor aerosol dispersion and accumulation in the context of COVID-19: Effects of masks and ventilation. Physics of Fluids, 33(7), 2021.

Tham, K.W., Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy and Buildings, 130:637–650, 2016.

Thomas, D., Mistry, B., Snow, S., and Schraefel, M.C. Indoor air quality monitoring (IAQ): A low-cost alternative to CO2 monitoring in comparison to an industry standard device. Advances in Intelligent Systems and Computing, 858:1010–1027, 2019.

Toschke, Y., Lusmoeller, J., Otte, Schmidt, L., J., Meyer, S., Tessmer, A., Brockmann, Ch., Ahuis, M., Hüer, E., Kirberger, Ch., and Berben D. Distributed LoRa based CO2 monitoring network – A standalone open source system for contagion prevention by controlled ventilation. HardwareX, 11:e00261, 2022.

Wang, S.K., Chew, S.P., Jusoh, M.T., Khairunissa, A., Leong, K.Y., and Azid, A.A. WSN based indoor air quality monitoring in classrooms. volume 1808, 2017.

World Health Organization. Who director-general’s opening remarks at the media briefing, 2023.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas