DISEÑO CIRCUITAL DE UN ESCÁNER LÁSER OPTOMECATRÓNICO PARA LA CLASIFICACIÓN DE FRUTAS EN TIEMPO REAL (DESIGN OF AN OPTOMECHATRONIC LASER SCANNER FOR REAL TIME FRUIT CLASSIFICATION)

David Fernández Rodríguez, Rafael Mota Grajales

Resumen


Resumen
El procesamiento y la clasificación de frutas en la agricultura de poscosecha requieren tecnologías eficientes y accesibles para los productores. Este estudio presenta el desarrollo de un sistema optomecatrónico de alta velocidad que utiliza un arreglo de láseres semiconductores y fotodetectores comerciales para capturar contornos bidimensionales de frutas. El objetivo es mejorar la precisión y eficiencia de los sistemas automatizados de clasificación, proporcionando información en tiempo real para el procesamiento. A medida que la fruta atraviesa el área de escaneo, el sistema registra las interrupciones de los haces de luz generadas por el contorno de la fruta, permitiendo la creación de perfiles transversales de su forma. Estos perfiles se utilizan para reconstruir la geometría de la fruta, permitiendo la estimación de su volumen. Para validar el sistema, se implementó un algoritmo en Verilog en una FPGA Tang Nano 20K, que mide los tiempos de respuesta del circuito y realiza cálculos de volumen con alta precisión en tiempo real. Este enfoque incrementa la eficiencia y la sostenibilidad en el sector agroindustrial al mejorar la clasificación rápida y precisa en las líneas de producción.
Palabras Clave: Clasificación, Láseres, Optomecatrónico, Procesamiento, Volumen.

Abstract
The processing and classification of fruits in post-harvest agriculture demands efficient and accessible technologies for producers. This study presents the development of a high-speed optomechatronic system that uses an array of semiconductor lasers and commercial photodetectors to capture two-dimensional contours of fruits. The objective is to improve the accuracy and efficiency of automated classification systems by providing real-time information for processing. As the fruit passes through the scanning area, the system records interruptions in the light beams generated by the fruit's contour, allowing the creation of cross-sectional profiles of its shape. These profiles are used to reconstruct the fruit's geometry, enabling volume estimation. To validate the system, an algorithm was implemented in Verilog on a Tang Nano 20K FPGA, which measures the circuit's response times and performs volume calculations with high precision in real time. This approach enhances efficiency and sustainability in the agro-industrial sector by improving fast and accurate classification in production lines.
Keywords: Classification, Lasers, Optomechatronic, Processing, Volume.

Texto completo:

363-381 PDF

Referencias


Chu, P., Lammers, K., Li, Z., Lu, R. Active Laser-Camera Scanning for High-Precision Fruit Localization in Robotic Harvesting: System Design and Calibration. Horticulturae, No. 10, 40, 2024.

Costa, A., Pinto, F., Braga, R., Motoike, S., Gracia, L. Relationship between biospeckle laser technique and firmness of Acrocomia aculeata fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, No. 21, 68–73, 2017.

Dimao, D., Zhongzhi, H. A Carrot Sorting System Using Machine Vision Technique. Applied engineering in agriculture, No. 2, 149-156, 2017.

Fernández, B. A. El láser, la luz de nuestro tiempo, Globalia, 2010.

Lockman, N., Hashim, N., Onwude, D. Laser-Based imaging for Cocoa pods maturity detection. Food and Bioprocess Technology, No.12, 1928–1937. 2019.

Makhsous, S., Mohammad, H., Mamishev, A. A Novel Mobile Structured Light System in Food 3D Reconstruction and Volume Estimation. Sensors, No. 3, 564, 2019.

Maschi, F., Korolija, D., Ionso, G. Serverless FPGA: Work-In-Progress. Proceedings of the 1st Workshop on Serverless Systems, Applications and Methodologies, 3-4,2024.

Minarni, S., Anjasmara, R., Nurmaya, S. Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system. AIP Conference Proceedings, No. 1, 2017.

Moreda, G., Ortiz-Cañavate, J. Effect of orientation on the fruit on-line size determination performed by an optical ring sensor. Journal of food engineering, No. 81, 388-398, 2007.

Nuño, M., Dávila, I., Hernández, Y. Real-Time Embedded Vision System for Online Monitoringand Sorting of Citrus Fruits. Electronics, No. 12, 3891, 2023.

Rahman, A., Abd, R., Helmy, S. A laser reflection method to detect strawberry fruit defects. Agricultural Engineering International: CIGR Journal, No. 2, 255-263, 2021.

Shi, J., Beling, A., Nishiyama, N. Special Issue on Advanced Ultra-High Speed Optoelectronic Devices. Photonics, No. 9, 312, 2022.

Taghinezhad, J., Alimardani, R., Soltani, M. Prediction of banana volume using capacitive sensing method. Elixir Agriculture, No. 46, 8418-8421, 2012.

Wu, A., Juanhua, Z., Ren, T. Detection of apple defect using laser-induced light backscatteribg imaging and convolutional neural network. Computers & Electrical Engineering, No. 81, 106454, 2020.

Zhang, Y., Liu, C., & Liang, Z. In-field estimation of orange number and size by 3D laser scanning. Computers and Electronics in Agriculture, 170, 105261. 2020.

Zhao, Y., Chenglong, L., Liang, Z. Recent research process on perovskite photodetectors: A review for photodetector—materials, physics, and applications. Chinese Physics B, No. 12, 127806, 2018.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas