TÉCNICA DE CONTROL APLICADA A UN GENERADOR DE INDUCCIÓN DOBLEMENTE ALIMENTADO (CONTROL TECHNIQUE APPLIED TO A DOUBLY FED INDUCTION GENERATOR)

Luis Avila Reyes, Oscar Carranza Castillo, Francisco Emilio Rodarte Gutiérrez, Daniel Memije Garduño, Jaime José Rodríguez Rivas, Rubén Ortega González

Resumen


Resumen
En este trabajo se presenta la simulación de la técnica de control clásico aplicado a un convertidor Back-to-Back en un sistema eólico de generación empleando un generador de inducción doblemente alimentado de 5.5 kW, dicho sistema se encuentra interconectado a una red trifásica con un nivel de tensión de 220 V de línea a línea. Mediante la herramienta Simulink de MATLAB se analizan los modos de operación del generador relacionando los valores de referencia del sistema de control con los valores medidos. La propuesta del sistema de control emplea la sintonización de lazos de control de corriente, tensión y potencia junto con el uso de la estrategia antiwindup tracking back permitiendo mantener el sistema por debajo de los límites de operación; el uso de la modulación de vectores espaciales para el accionamiento de los convertidores, con el objetivo de controlar los flujos de potencia en el estator y rotor de la máquina, por medio de la electrónica de potencia.
Palabras Clave: Antiwindup, Convertidor Back-to-Back, Control vectorial, Generador de inducción doblemente alimentado, Modulación PWM.

Abstract
This paper presents the simulation of the classical control technique applied to a Back-to-Back converter in a wind generation system using a doubly fed induction generator of 5.5 kW, this system is interconnected to a three-phase network with a voltage level of 220 V line to line. Using MATLAB's Simulink tool, the generator's operating modes are analyzed by relating the control system's reference values to the measured values. The control system proposal employs the tuning of current, voltage and power control loops together with the use of the antiwindup tracking back strategy allowing to keep the system below the operating limits; the use of space vector modulation for the drive of the converters, with the objective of controlling the power flows in the stator and rotor of the machine, by means of the power electronics.
Keywords: Antiwindup, Back-to-Back converter, Doubly fed induction machine, PWM modulation, Vector control.

Texto completo:

PDF

Referencias


Abad, G. Doubly fed induction machine Modeling and control for wind energy generation. IEEE Wiley, New Jersey, 2011.

Abdelbaset, A. Wind Driven Doubly Fed Induction Generator. Springer, Egypt, 2018.

Aydin, E. Vector Control of DFIG in Wind Power Applications. 5th International Conference on Renewable Energy Research and Applications. Birmingham, 2016.

Dinesh, S., Meenakshi, R., Suhanya, M. S., Kumaran, M. S., Muthu, R. Modeling and direct power control of DFIG for wind energy conversion system with a back to back converter. 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). India, 2014.

El-jalyly, A. Modeling and control of a DFIG for wind Turbine conversion system using Back-to-back PWM converters. Casablanca: Hassania school of public works, 2019.

Fairchild Semiconductor Industries, FNA25060, 600 V Motion SPM 2 Series. USA, 2015.

Imtiyaz, T. Modelling and Analysis of Vector Controlled Doubly Fed Induction Generator (DFIG). Power Electronics and High Voltage in Smart Grid, 817, 255-268, 2022.

Kouider, K. DTC Versus Vector Control Strategies for a Grid Connected DFIG-Based Wind Turbine. Distributed Sensing and Intelligent Systems, 723-735, 2022.

Li, S. Analysis of Decoupled d-q Vector Control in DFIG Back-to-Back PWM Converter. IEEE, Tuscaloosa, 2007.

Ma, L. Research and simulation of double-fed wind power. 2011 International Conference on Electrical and Control Engineering. Yichang, 2011.

Makhlouf, L. Steady state analysis of a Doubly-Fed Induction Generator. 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, 2017.

Mohan, N. Advanced Electric Drives. IEEE Wiley, Hoboken, 2014.

Ogata, K. Modern Control Engineering. Pearson, New Jersey, 2010.

Sul, S. Control of Electric Machine Drive Systems. IEEE Wiley, Hoboken, 2011.

Sun, H. DFIG Wind power generation based on Back-to-back PWM Converter. International Conference on Mechatronics and Automation, 2276-2280, 2009.

VEM motors GMbH, Three-phase motors with slipring rotor, 5.5 kW, Wemigerode, Dinamarca, 2018.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas