ANÁLISIS DE ESTRÉS Y SINTOMATOLOGÍA EN PECES MEDIANTE SISTEMAS DE VISIÓN ARTIFICIAL: UNA REVISIÓN DEL ESTADO DE ARTE (A STRESS ANALYSIS AND SYMPTOMATOLOGY IN FISH THROUGH ARTIFICIAL VISION SYSTEMS: A STATE-OF-THE-ART REVIEW)
Resumen
En este artículo se presenta una revisión del estado del arte exhaustiva enfocada a la aplicación de sistemas de visión artificial para el análisis de estrés y sintomatología en peces bajo condiciones de crianza. El estrés en los peces es una adaptación evolutiva que les permite hacer frente a cambios en su entorno. Puede ser causado por diversos factores que pueden afectar su desarrollo en condiciones de crianza.
La presente revisión analiza los distintos métodos encontrados en la bibliografía para evaluar el estrés en peces utilizando métodos no invasivos con técnicas de visión artificial. Se llevó a cabo una búsqueda exhaustiva en bases de datos como PubMed, IEEE Xplore y Scopus, identificando estudios entre 2012 – 2022 relacionados con el uso de sistemas de visión artificial en la evaluación de estrés y sintomatología en peces. Se utilizaron palabras clave relevantes, como "visión artificial", "análisis de comportamiento", "estrés en peces" y "bienestar animal", para seleccionar aquellos estudios que presentaran métodos y resultados sobre el uso de esta tecnología en entornos de crianza reales. Los estudios demuestran que la visión artificial es efectiva para analizar el estrés en peces, lo que puede beneficiar la conservación de poblaciones acuáticas, aunque se necesita más estandarización en las metodologías y datos más diversos para validar y generalizar los resultados.
Palabras Clave: Acuacultura, Estrés en peces, Visión artificial.
Abstract:
This article provides a comprehensive state-of-the-art review focused on the application of artificial vision systems for the analysis of stress and symptoms in fish under breeding conditions. Stress in fish is an evolutionary adaptation that enables them to cope with changes in their environment. It can be caused by various factors that can affect their development under breeding conditions.
This review examines the various methods found in the literature for assessing stress in fish using non-invasive techniques with artificial vision. A thorough search was conducted in databases such as PubMed, IEEE Xplore, and Scopus, identifying studies from 2012 to 2022 related to the use of artificial vision systems in the assessment of stress and symptoms in fish. Relevant keywords such as "artificial vision," "behavior analysis," "fish stress," and "animal welfare" were used to select studies that presented methods and results on the use of this technology in real breeding environments. The studies demonstrate that artificial vision is effective in analyzing stress in fish, which can benefit the conservation of aquatic populations, although more standardization in methodologies and a broader range of data are needed to validate and generalize the results.
Keywords: Artificial vision, Aquaculture, Fish stress.
Texto completo:
288-304 PDFReferencias
Abdel-Fattah, A. F., F. A. Ahmed, E. N. Said and M. R. Farag, (2021). Impact of feeding system on the behaviour and performance of Nile tilapia (Oreochromis niloticus). Aquaculture 538: 736514.
Alfonso, S., M. Gesto and B. Sadoul, (2021). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 98(6): 1496-1508.
Amorim, J., M. Fernandes, I. Abreu, F. Tavares and L. Oliva-Teles, (2018). Escherichia coli's water load affects zebrafish (Danio rerio) behavior. Science of The Total Environment 636: 767-774.
Arturo-Rodríguez, C. H. J. I. P., (2012). Stress in farmed fish.
Barreto, R. E. and G. L. Volpato, (2004). Caution for using ventilatory frequency as an indicator of stress in fish. Behavioural Processes 66(1): 43-51.
Barreto, R. E. and G. L. Volpato, (2006). Stress responses of the fish Nile tilapia subjected to electroshock and social stressors. Braz J Med Biol Res 39(12): 1605-1612.
Barry, M. J., (2012). Application of a novel open-source program for measuring the effects of toxicants on the swimming behavior of large groups of unmarked fish. Chemosphere 86(9): 938-944.
Beitinger, T. L., (1990). Behavioral Reactions for the Assessment of Stress in Fishes. Journal of Great Lakes Research 16(4): 495-528.
Bracino, A. A., R. S. Concepcion, E. P. Dadios and R. R. P. Vicerra, (2020). Biofiltration for Recirculating Aquaponic Systems: A Review. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM).
Conte, F. S., (2004). Stress and the welfare of cultured fish. Applied Animal Behaviour Science 86(3): 205-223.
Damsgård, B. and F. Huntingford, (2012). Fighting and Aggression. Aquaculture and Behavior: 248-285.
Davidson, J., C. Good, C. Welsh and S. T. Summerfelt, (2011). Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculating aquaculture systems. Aquacultural Engineering 45(3): 109-117.
Duk, K., J. Pajdak, E. Terech-Majewska and J. Szarek, (2017). Intracohort cannibalism and methods for its mitigation in cultured freshwater fish. Reviews in Fish Biology and Fisheries 27(1): 193-208.
Edwards, P., C. K. Lin and A. Yakupitiyage, (2000). Semi-intensive pond aquaculture. Tilapias: Biology and Exploitation. M. C. M. Beveridge and B. J. McAndrew. Dordrecht, Springer Netherlands: 377-403.
FAO, (2022). El estado mundial de la pesca y la acuicultura 2022. El estado mundial de la pesca y la acuicultura (SOFIA) 2022: 288.
Goddek, S., A. Joyce, B. Kotzen and G. M. Burnell, (2019). Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Cham, Springer International Publishing.
Gonçalves-de-Freitas, E., M. Bolognesi, A. Gauy, M. Brandão, P. Giaquinto and M. Fernandes-Castilho, (2019). Social Behavior and Welfare in Nile Tilapia. Fishes 4(2).
Guerra-Santos, B., J. F. López-Olmeda, B. O. de Mattos, A. B. Baião, D. S. P. Pereira, F. J. Sánchez-Vázquez, R. B. Cerqueira, R. C. B. Albinati and R.Fortes-Silva, (2017). Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 204: 40-47.
Hai, F. I., C. Visvanathan and R. Boopathy, (2018). Sustainable Aquaculture, Springer.
Heath, A. G., (1972). A critical comparison of methods for measuring fish respiratory movements. Water Research 6(1): 1-7.
Kato, S., T. Nakagawa, M. Ohkawa, K. Muramoto, O. Oyama, A. Watanabe, H. Nakashima, T. Nemoto and K. Sugitani, (2004). A computer image processing system for quantification of zebrafish behavior. Journal of Neuroscience Methods 134(1): 1-7.
Keating, B. A., M. Herrero, P. S. Carberry, J. Gardner and M. B. Cole, (2014). Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Security 3(3-4): 125-132.
Lafferty, K. D., C. D. Harvell, J. M. Conrad, C. S. Friedman, M. L. Kent, A. M. Kuris, E. N. Powell, D. Rondeau and S. M. Saksida, (2015). Infectious Diseases Affect Marine Fisheries and Aquaculture Economics. Annual Review of Marine Science 7(1): 471-496.
Li, D., G. Wang, L. Du, Y. Zheng and Z. Wang, (2022). Recent advances in intelligent recognition methods for fish stress behavior. Aquacultural Engineering 96: 102-222.
Li, Y. A. N., J.-M. Lee, T.-S. Chon, Y. Liu, H. Kim, M.-J. Bae and Y.-S. Park, (2012). Analysis of movement behavior of zebrafish (danio rerio) under chemical stress using hidden Markov model. Modern Physics Letters B 27(02): 1350014.
Måløy, H., A. Aamodt and E. Misimi, (2019). A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Computers and Electronics in Agriculture 167: 105087.
Mateus, A. P., D. M. Power and A. V. M. Canário, (2017). Chapter 8 - Stress and Disease in Fish. Fish Diseases. G. Jeney, Academic Press: 187-220.
Pillay, T. V. R. (2008). Aquaculture and the Environment, John Wiley & Sons.
Pinkiewicz, T. H., G. J. Purser and R. N. Williams, (2011). A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: A case study using cage-held Atlantic salmon. Aquacultural Engineering 45(1): 20-27.
Portz, D., C. Woodley and J. Cech, (2006). Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology and Fisheries 16: 125-170.
Saberioon, M., A. Gholizadeh, P. Cisar, A. Pautsina and J. Urban, (2017). Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Reviews in Aquaculture 9(4): 369-387.
Saberioon, M. M. and P. Cisar, (2016). Automated multiple fish tracking in three-Dimension using a Structured Light Sensor. Computers and Electronics in Agriculture 121: 215-221.
Van Der Putte, I., M. B. H. M. Laurier and G. J. M. Van Eijk, (1982). Respiration and osmoregulation in rainbow trout (Salmo gairdneri) exposed to hexavalent chromium at different pH values. Aquatic Toxicology 2(2): 99-112.
Wei, Y., W. Li, D. An, D. Li, Y. Jiao and Q. Wei, (2019). Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access 7: 169306-169326.
Wendelaar Bonga, S. E., (1997). The stress response in fish. Physiological Reviews 77(3): 591-625.
Wold, P.-A., A. B. Holan, G. Øie, K. Attramadal, I. Bakke, O. Vadstein and T. O. Leiknes, (2014). Effects of membrane filtration on bacterial number and microbial diversity in marine recirculating aquaculture system (RAS) for Atlantic cod (Gadus morhua L.) production. Aquaculture 422-423: 69-77.
Xu, J., Y. Liu, S. Cui and X. Miao, (2006). Behavioral responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision. Aquacultural Engineering 35(3): 207-217.
Zhao, S., S. Zhang, J. Liu, H. Wang, J. Zhu, D. Li and R. Zhao, (2021). Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 540: 736724.
Zheng, H., R. Liu, R. Zhang and Y. Hu, (2014). A method for real-time measurement of respiratory rhythms in medaka (Oryzias latipes) using computer vision for water quality monitoring. Ecotoxicology and Environmental Safety 100: 76-86.
Zhou, C., K. Lin, D. Xu, L. Chen, Q. Guo, C. Sun and X. Yang, (2018). Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Computers and Electronics in Agriculture 146: 114-124.
Zhou, C., D. Xu, L. Chen, S. Zhang, C. Sun, X. Yang and Y. Wang, (2019). Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture 507: 457-465.
Zion, B., (2012). The use of computer vision technologies in aquaculture – A review. Computers and Electronics in Agriculture 88: 125-132.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx