ESTUDIO ESPECTROSCÓPICO DE IMIDAZOL PARA SU APLICACIÓN EN SENSORES DE FIBRA ÓPTICA (SPECTROSCOPIC STUDY OF IMIDAZOLE FOR ITS APPLICATION IN FIBER OPTIC SENSORS)

Pedro Marcos Velasco Bolom, Jorge Luis Camas Anzueto, Madaín Pérez Patricio, Rubén Grajales Coutiño

Resumen


Resumen
El desarrollo de sensores ópticos genera interés para múltiples aplicaciones en la medición de parámetros como el pH. Se presentan resultados de la caracterización óptica de un material orgánico usado como elemento sensible para la medición de pH. El material caracterizado es la Lofina (2,4,5-trifenil-1H-imidazol), muestra cambios en su absorbancia en la longitud de onda de 505 nm cuando se somete a variaciones de pH. El estudio comprende el análisis en función de la concentración de este material en una matriz polimérica y su absorbancia.
Palabras Clave: Espectroscopia, Fibra óptica, Lofina, Sensores.

Abstract
The development of optical sensors generates interest for multiple applications in the measurement of parameters such as pH. Results of the optical characterization of an organic material used as a sensitive element for pH measurement are presented. The characterized material is Lofin (2,4,5-triphenyl-1H-imidazole), it shows changes in its absorbance at the wavelength of 505 nm when subjected to pH variations. The study includes an analysis based on the concentration of this material in a polymeric matrix and its absorbance.
Keywords: Fiber optics, Lophine, Sensors, Spectroscopy.

Texto completo:

811-824 PDF

Referencias


Alison A. E., & Bruce D. A. UV-Visible absorption spectroscopy, organic applications. Encyclopedia of spectroscopy and spectrometry, third edition, ISBN: 9780128032244, pp 511-519, 2017.

Camas-Anzueto, J. L., Aguilar-Castillejos, A. E., Castañón-González, J. H., Luján-Hidalgo, C., Hernández de León, H. R., & Mota Grajales, R. Fiber Sensor Based on Lophine Sensitive Layer for Nitrate Detection in Drinking Water. Elsevier Editorial System for Optics and Lasers in Engineering, ISSN: 0003-7028, 2014.

Camas-Anzueto, J.L., Gómez-Valdéz, J.A., Meza-Gordillo, R., Pérez-Patricio, M., Hernández de León, H. R., & León- Orozco, V. Sensitive layer based on Lophine and calcium hydroxide for detection of dissolved oxygen in water. Measurement, vol. 68, pp 280-285, 2015.

Chauhan, M. & Singh, V. K. Fiber optic pH sensor using TiO2 – SiO2 composite layer with a temperature cross-sensitivity feature. International Journal for Light and Electron Optics, vol. 212, doi: 10.1016/j.ijleo.2020.164709, 2020.

Chen, S., Yang, Q., Xiao, H., Shi, H., & Ma, Y. Local pH Monitoring of Small Cluster of Cells using a Fiber-Optic Dual-Core Micro-Probe. Sensors and actuators. B. Chemical. Vol. 241, pp 398-406, doi: 10.1016/j.snb.2016.10.079, 2016.

Cheng, X., Bonefacino, J., Guan, B. O. & Tam, H. Y. All-polymer fiber-optic pH sensor. Optics Express, vol. 26, 11, pp 14610-14616, doi: 10.1364/OE.26.014610, 2018.

Chu, C.Y.; Lin, T.; Lin, C.Y. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. Int. J. Hydrogen Energy, vol. 38, pp 15849–15855, doi: 10.1016/j.ijhydene.2013.07.088, 2013.

Engholm, M., Hammarling, K., Andersson, H., Sandberg, M. & Nilsson, H. E. A Bio-Compatible Fiber optic pH sensor based on Thin core interferometric technique. Photonics, vol 6, 11, doi: 10.3390/photonics6010011, 2019.

Jhulki, S., & Moorthy, J. N. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification. Journal of Materials Chemistry, vol. 6(31), DOI: 10.1039/C8TC01300D, 2018.

Kulhánek, J., Bureš, F., & Beilstein J. Org. Chem., 8, 25–49. doi:10.3762/bjoc.8.4, 2012.

Kundu, A., Karthikeyan, S., Sagara, Y., Moon, D., & Anthony, S. P. Temperature-Controlled Locally Excited and Twisted Intramolecular Charge-Transfer State-Dependent Fluorescence Switching in Triphenylamine-Benzothiazole Derivatives. ACS Omega, vol. 4, 3, pp 5147-5154, DOI: 10.1021/acsomega.8b03099, 2019.

Laguecir, A., Ulrich, S., Labille, J., Fatin-Rouge, N., Stoll, S., & Buffle, J. Size and pH effect on electrical and conformational behavior of poly (acrylic acid): Simulation and experiment. European Polymer Journal, vol. 42, pp 1135-1144, doi: 10.1016/j.eurpolymj.2005.11.023, 2006.

Nandana, V., & Shankar, S. Hydrogel-coated fiber Bragg grating sensor for pH monitoring. Optical Engineering, vol. 55(6), doi: 10.1117/1.OE.55.6.066112, 2016.

Pathak, A. K., & Singh, V. K. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Optical Fiber Technology, vol. 39, pp 43-48, doi: 10.1016/j.yofte.2017.09.022, 2017.

Pérez-García, G. F., Camas-Anzueto, J. L., Ruíz-Pérez, V. I., Anzueto-Sánchez, G., López-Estrada, F. R., & Pérez-Patricio, M. Fiber-optic temperature sensor using a no-core fiber structure configuration coated with thermochromic material. Optical engineering, vol. 60, 11, 2021.

Radziszewski, B. R., Untersuchungen uber Hydrobenzamid, Amarin und Lophin. Chem. Ber. Vol. 10, pp 70-75, 1877.

Schroder, C. R., Waidgans, & B. M., Jlimant I. pH Fluorosensors for use in marine systems. Analyst, vol. 6, doi: 10.1039/B501306B, 2005.

Staudinger, C., Strobl, M., Fischer, J. P., Thar, R., Mayr, T., Aigner, D., Muller, B. J., Muller, B., Lehner, P., Gunter, M., Frtzche, E., Ehgartener, J., Zach, P. W., Clarke, F., Mutzberg, A., Muller, J. D., Achterberg, E. P., Borisov, S. M., & Klimant, I. A versatile optode system for oxygen, carbon dioxide, and pH measurements in seawater with integrated battery and logger. Limnology and oceanography/methods. Vol. 16(7), pp 159-473, doi: 10.1002/lom3.10260, 2018.

Tou Qiang, Z., Chan, C. C., Hong, J., Png, S., Eddie, K., & Tan, T. A. H. Double pass Mach Zehnder fiber interferometer pH sensor. Journal of Biomedical Optics, vol. 19(4), 2014.

Tsuji, S., Yamanaka, H., & Minamoto, T. Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples. Limnology, vol.18, pp 1–7, doi: 10.1007/s10201-016-0483-x, 2016.

Werner, J., Belz, M., Klein, K., Sun, T., & Grattan, K. T. V. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Royal Society of Chemistry, vol. 146, pp 4811-4821, doi: 10.1039/d1an00631b, 2021.

Yang, Q., Wang, H., Lan, X., Cheng, B., Chen, S., Hai, Xiao S., & Ma, Y. Reflection-mode micro-spherical fiber-optic probes for in vitrio real-time and single-cell level pH sensing. Sensors and Actuators B. Chemical. Vol. 207, pp 571-580, doi: 10.1016/j.snb.2014.10.107, 2015.

Zhao, Y., Lei, M., Liu, S. X. & Zhao, Q. Smart hidrogel-based optical fiber SPR sensor for pH. Sensors and Actuators, vol. 18, doi: 10.1016/j.snb.2018.01.120, 2018.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas