DISEÑO, CONSTRUCCIÓN Y CONTROL DE UN CONVERTIDOR FLYBAK CON BASE EN EL MICROCONTROLADOR ESP32 (DESIGN CONSTRUCTION AND CONTROL OF FLYBACK CONVERTER WITH THE MICROCONTROLLER ESP32)
Resumen
Los convertidores flyback son ampliamente usados en aplicaciones donde se requiere aumentar o disminuir el voltaje de salida, manteniendo aislamiento entre la alimentación de la entrada y la salida. En este trabajo se muestra la forma en que se diseña, simula y valida experimentalmente el control de voltaje de un convertidor flyback. El control usado es un PID, el cual se hizo partiendo de una aproximación de su respuesta a un sistema de primer orden, siguiendo la idea de Michael Fliess en su control libre de modelo. La simulación se hace en PSIM® para probar la parte analógica, la digital y el efecto del periodo de muestreo en la respuesta. Se diseñó la instrumentación para poder monitorear y controlar al convertidor con el microcontrolador ESP32 con un periodo de muestreo de 500 µs. Al final se probó experimentalmente como convertidor elevador y se le aplicaron cambios de resistencia de carga y el control fue capaz de compensarlas.
Palabras Clave: Controlador PID, Convertidor Flyback, ESP32, Modelado.
Abstract
Flyback converters are widely used in applications requiring increasing or decreasing the output voltage, maintaining isolation between the input and output power. This paper shows how to design, simulate, and experimentally validate, the control of the voltage output in a flyback converter. The control law used was a PID, which was made approximating the flyback's response to a first-order system, following the idea of Michael Fliess related to a model-free control. The simulation was done in PSIM® to test the analog and digital parts and the effect of the sampling period in the response. The designed instrumentation allowed to monitor and control the converter with the ESP32 Microcontroller, using a sampling period of 10kHz. The system was experimentally tested as a boost converter and load resistance changes were applied and the control was able to compensate for them.
Keywords: PID controller, Flyback converter, ESP32, Modeling.
Texto completo:
776-793 PDFReferencias
Arslan, S. M., & Abbas, G. Artificial Intelligence-Based Controller for DC-DC Flyback Converter, MDPI applied sciences, 2019.
Batarseh, I. Power electronic circuits, John Wiley & Sons, Inc, 2004.
Fliess, M., & Cédric, J. Model-free control, International Journal of Control, Taylor & Francis, 86 (12), 2228-2252, 2013.
Ghamari, S.M., Khavari, F. & Mollaee, H. Lyapunov-based adaptive PID controller design for buck converter. Soft Computing 27, 5741, 2023.
Gupta, A., & Joshi, D. Comparative Analysis of Nonlinear SMC Controller with Linear PID Controller for Flyback Converter. DC—DC Converters for Future Renewable Energy Systems. Energy Systems in Electrical Engineering. Springer, Singapore, 71-87, 2022.
Hart, D. W. Electrónica de Potencia. Madrid, Pearson education, 217-222, 2008.
Hernández, G. V. M., Silva, O., & Castillo, S. R. V. Control Automático: Teoría de Diseño, Construcción de Prototipos, Modelado, Indentificación y Pruebas Experimentales. Colección CIDETEC del Instituto Politécnico Nacional, 2013.
Kotb, R., Chakraborty, S., Tran, D. D., Abramushkina, E., El-Baghdadi, M., & Hegazy, O. Power Electronics Converters for Electric Vehicle Auxiliaries: State of the Art and Future Trends, Energies, vol. 16, no. 4, 1753, 2023.
Nise, S. N. Control Systems Engineering, John Wiley & Sons, 2011.
Ozan, V. Developing IoT Projecs with ESP32. Automote your home or business with inexpensive Wi-Fi devices, BIRMINGHAM, Inglaterra, 1a, 2021.
Raman, K., Jeyaraman, K., & Mekhilef, S. Design and stability analysis of interleaved flyback converter control using Lyapunov direct method with FPGA implementation, Electr Eng 102, 1651–1665, 2020.
Ramírez, L. F. H., Yescas, M. E., Peralta, S. E., Mendoza, J. A. J., & Iturbide, J. F. Control Libre de Modelo de Un Convertidor CD-CD Buck y Su Implementación en la Plataforma de Hardware in the Loop “Thyphoon”. Memorias del Congreso Nacional de Control Automático, 43-48, 2019.
Saravanan, S., Pandiyan P., Chinnadurai, T., Tiwari R., & Prabaharan, N. Overview of Bidirectional DC–DC Converters Topologies for Electric Vehicle and Renewable Energy System, DC—DC Converters for Future Renewable Energy Systems. Energy Systems in Electrical Engineering. Springer, Singapore. 2022.
Siffat, S. A., Ahmad, I., Rahman, A. U, & Islam, Y. Robust Integral Backstepping Control for Unified Model of Hybrid Electric Vehicles, IEEE Access, vol. 8, 49038-49052, 2020.
Somnath, P., Bhim, S., & Ashish, S. An efficient wide input wide output CrCM flyback converter in high-power LED lighting, International Transactions on Electrical Energy Systems, Wiley Online Library, 2020.
Yang, C., Xie, F., Chen, Y. Xiao, W., & Zhang, B. Modeling and Analysis of the Fractional-Order Flyback Converter in Continuous Conduction Mode by Caputo Fractional Calculus. Electronics 9, 1544, 2020.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx