TRAMPA ELECTRÓNICA IOT PARA EL MONITOREO DE SPODOPTERA FRUGIPERDA EN CULTIVOS DE MAÍZ (IOT ELECTRONIC TRAP FOR MONITORING SPODOPTERA FRUGIPERDA IN CORN CROPS)

Andrés Fernando Jiménez López, Fabián Rolando Jiménez López, Dayra Yisel García Ramírez, Elsa Judith Guevara, Andrés Javier Peña Quiñones

Resumen


Resumen
El manejo integrado de plagas en la agricultura es fundamental para aumentar rendimientos en los cultivos, disminuir costos de producción y mejorar la sustentabilidad ambiental. Este artículo muestra los avances en el desarrollo de trampas electrónicas inteligentes para el monitoreo de la incidencia del gusano cogollero (Spodoptera Frugiperda) en un cultivo de maíz. El artículo se centra en el diseño de la arquitectura del sistema y el desarrollo de algoritmos de procesamiento de imágenes para la detección y el conteo de insectos. El seguimiento de la población de insectos se transmite a una estación base y se monitorea mediante dispositivos con acceso a internet. En los resultados preliminares de detección de polillas se encontró una precisión de 96.1% mediante una red neuronal convolucional y 100% con tratamiento digital de imágenes. Se evidencia la potencialidad del sistema desarrollado para el seguimiento de esta plaga en el cultivo de maíz.
Palabras Claves: Agricultura, insectos, maíz, redes de sensores inalámbricas, tratamiento de imágenes.

Abstract
Integrated pest management in agriculture is essential for increasing crop yields, reducing production costs, and improving environmental sustainability. This article presents advances in the development of intelligent electronic traps for monitoring the incidence of fall armyworm (Spodoptera frugiperda) in a corn crop. The article focuses on the design of the system architecture and the development of image processing algorithms for insect detection and counting. Insect population monitoring data are transmitted to a base station and monitored using devices with internet access. Preliminary results for moth detection showed 97% accuracy using a convolutional neural network and 100% accuracy with digital image processing. The potential of the developed system for monitoring this pest in corn cultivation is evident.
Keywords: Agriculture, corn, image processing, insects, wireless sensor networks.

Texto completo:

651-666 PDF

Referencias


Bar-On, Y. M., Phillips, R., & Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci. United States, No. 115, 6506–6511, May, 2018.

Ecobertura. Spodoptera Frugiperda (Smith), (2023). Tomado de: https://ecobertura.es/spodoptera-frugiperda/ (último acceso 01/17/2023).

Fitzpatrick, M. Create GUI Applications with Python & Qt5 (PyQt5 Edition): The hands-on guide to making apps with Python. Independently published, 860, 2022.

Flórián, N., Gránicz, L., Gergócs, V., Tóth, F., & Dombos, M. Detecting Soil Microarthropods with a Camera-Supported Trap. Insects, Vol. 11, No. 244, April, 2020.

Genoud, A. P., Torsiello, J., Belson, M., & Thomas, B. P. Entomological photonic sensors: Estimating insect population density, its uncertainty and temporal resolution from transit data. Ecological Informatics, Vol. 61, No. 101186, March, 2021.

Goldshtein, E., Cohen, Y., Hetzroni, A., Gazit, Y., Timar, D., Rosenfeld, L., & Mizrach, A. Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency. Computers and Electronics in Agriculture, Vol. 139, 115-125, June, 2017.

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS One, Vol. 11, No. e0165632, October, 2016.

Gutiérrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankic, I., & Lenza, L. Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases. J. Sensors, Vol. 2019, No. 5219471, 1-15, May, 2019.

Harrison, R. D., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., & Van Den Berg, J. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of environmental management, No. 243, 318-330, 2019.

Holguín, G. A., Lehman, B. L., Hull, L. A., Jones, V. P., & Park, J. Electronic traps for automated monitoring of insect populations. IFAC Proceedings Volumes, Vol. 43, No. 26, 49-54, 2010.

Kalleshwaraswamy, C. M., Asokan, R., Swamy, H. M., Maruthi, M. S., Pavithra, H. B., Hegde, K., Navi, S., Prabhu, S. T., & Goergen, G. First report of the Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosystems, Vol. 24, No. 1, 23–29, 2018.

Montezano, D. G., Sosa, D. R., Roque, V. F. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, Vol. 26, No. 2, 286-300, October, 2018.

Paredes, F. A., Rivera, G., Bocanegra, V., Martínez, H. Y., Berrones, M., Niño, N., & Herrera, V. Advances in control strategies against Spodoptera frugiperda. A review. Molecules, Vol. 26, No. 18, 1-8, September, 2021.

Potamitis, I., Rigakis, I., Vidakis, N., Petousis M., & M. Weber. Affordable Bimodal Optical. Sensors to Spread the Use of Automated Insect Monitoring. J. Sensors, Vol. 2018, No. 3949415, 1-25, May, 2018.

Preti, M., Verheggen, F., Angeli, S. Insect pest monitoring with camera-equipped traps: strengths and limitations. J. of Pest Science, Vol. 94, No. 1, 1-15, March, 2021.

Rigakis, I., Varikou, K., Nikolakakis, A., Skarakis, Z., Tatlas, N., & Potamitis, I. The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner. Computers and Electronics in Agriculture, Vol.185, No. 106154, 1-25, June, 2021.

Saradopoulos, I., Potamitis, I., Ntalampiras, S., & Antonidakis, E. Edge Computing for Vision-Based, Urban-Insects Traps in the Context of Smart Cities. J. Sensors, Vol. 22, No. 2006, March, 2022.

Weather Spark. Average Weather in Villavicencio, Colombia, (2023). Tomado de: https://weatherspark.com/y/24273/Average-Weather-in-Villavicencio-Colombia-Year-Round (último acceso 03/17/2023).

Weber, M., Geier, M., Potamitis, I., Pruszynski, C., Doyle, M., Rose, A., Geismar, M., & Encarnacao, J. The BG-counter, the first operative automatic mosquito counting device for online mosquito monitoring: Field tests and technical outlook. Proc of the AMCA 2017 83rd Annual Meeting, The American Mosquito Control Association, San Diego, USA, No.1, 13–17, February 2017.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas