ANÁLISIS Y SIMULACIÓN DE UN SISTEMA FOTOVOLTAICO INTERCONECTADO A UNA RED DISTRIBUIDA EN BAJA TENSIÓN (ANALISIS AND SIMULATION OF A PHOTOVOLTAIC SYSTEM FOR A LOW VOLTAGE DISTRIBUTED NETWORK)
Resumen
Este trabajo presenta el análisis y la simulación de un sistema fotovoltaico de 5 kW interconectado a una red de distribución de baja tensión trifásica. El sistema se compone de un inversor fuente de voltaje de trifásico, una red trifásica de 220V, y una carga estrella con factor de potencia unitario. El análisis del panel solar, el inversor, y la interacción con la red se describe mediante modelos analógicos de comportamiento. Los resultados de simulación muestran la respuesta esperada del sistema de generación distribuida (GD) en condiciones de operación nominal y bajo un transitorio de irradiancia solar. El análisis presentado puede generalizarse y adaptarse para emular la respuesta de sistemas fotovoltaicos interconectados a la red de diferente rango de potencia.
Palabras Clave: Generación distribuida, Inversor trifásico, Sistema fotovoltaico.
Abstract
This work presents the analysis and simulation of a 5 kW photovoltaic system connected to a low voltage three-phase distribution grid. The system consists of a three-phase voltage source inverter, a 220V three-phase grid, and a star-connected load with a unity power factor. The analysis of the solar panel, the inverter, and the interaction with the grid is described using analog behavioral models. Simulation results demonstrate the expected response of the distributed generation (DG) system under nominal operating conditions and during a transient of solar irradiance. The presented analysis can be generalized and adapted to emulate the response of grid-connected photovoltaic systems of different power ranges.
Keywords: Distributed generation, Photovoltaic system, Three-phase inverter.
Texto completo:
479-495 PDFReferencias
Bansal, Y., & Sodhi, R. PMUs Enabled Tellegen's Theorem-Based Fault Identification Method for Unbalanced Active Distribution Network Using RTDS, in IEEE Systems Journal, vol. 14, No. 3, 4567-4578, September 2020.
Blaabjerg, F., Yang, Y., Ma, K., & Wang, X. Power electronics-the key technology for renewable energy system integration. International Conference on Renewable Energy Research and Applications, 1618-1626. 2015.
Castañer, L., & Silvestre, S. Modelling Photovoltaic Systems using PSpice (1st Edition). John Wiley & Sons. England. 2002.
Díaz J., & Morales-Acevedo. A. Photovoltaic module simulator implemented in SPICE and Simulink. 12th International Conference on Electrical Engineering, Computing Science and Automatic Control. México. 2015.
Duran, P. A practical guide to analog behavioral modeling for IC system design. Springer Science & Business Media, 2012.
Erickson, R. W., & Maksimovic, D. Fundamentals of Power Electronics, 3rd Edition, Springer Nature Switzerland. 215-272. 2020. DOI: 10.1007/978-3-030-43881-4.
Fang, J., Deng, H., & Goetz, S. M. Grid Impedance Estimation Through Grid-Forming Power Converters. in IEEE Transactions on Power Electronics, vol. 36, no. 2, 2094-2104, Feb, 2021. DOI: 10.1109/TPEL.2020.3010874.
Harper, E. Los conceptos básicos de la generación, transmisión, transformación y distribución de la energía eléctrica (1a Edición). LIMUSA. México. 8-9, 2014.
He, J., Li, Y., Guerrero J. M., Blaajberg F., & Vasquez, J. C. An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme. IEEE Transactions on Power Electronics, vol. 28, no. 11, 5272-5282, Nov, 2013, DOI: 10.1109/TPEL.2013.2243757.
IEEE1547. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces," in IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), 1-138, 2018, DOI: 10.1109/IEEESTD.2018.8332112
Li, S., Li, X., & Lee, X. Weighted average current method for active damping control based on grid voltage feed-forward. Journal of Cloud Computing: Advances, Systems and Applications. 10(1), 1-12, 2021.
Mohan, N., Undeland, T. M., & Robbins, W. P. Electrónica de Potencia: Convertidores, Aplicaciones y Diseño. 3a Edición. McGraw-Hill/Interamericana Editores. México. 198-202, 2009.
Rashid, M. H. Power Electronics, 4th Edition. Pearson Education. 847-848, 2014.
Redzuan, M. R., & Abdul, N. H. Modelling and Simulation of Double Diode Model of PV Cell by Using LtSpice. Journal of Engineering Technology, 211-215, 2022.
Rocabert, J. Luna, A., Blaabjerg, F., & Rodriguez, P. Control of power converters in AC microgrids. IEEE transactions on power electronics, 27(11), 4734-4749. 2012.
Sultana, N., Ahad, A., & Hassan, M. K. Simulation and Analysis of the Effect of Change of Different Parameters on the Characteristics of PV Cell Using LTspiceIV. International Journal of Science and Research. 4(2), 63-68, 2013.
Teodorescu, R., Liserre, M., & Rodriguez, P. Grid converters for photovoltaic and wind power systems. John Wiley & Sons. 2011.
Vogt, H., Atkinson, G. & Nenzi, P. Ngspice User’s Manual Version 42. Online version at: http://ngspice.sourceforge.net/. Acceded in February 2024.
Wang, X., Taul, M. G., Wu, H., Liao, Y., Blaabjerg, F., & Harnefors, L. Grid-synchronization stability of converter-based resources—An overview. IEEE Open Journal of Industry Applications, 1, 115-134. 2020.
Yang, Y., Chen, W., & Blaabjerg, F. Advanced control of photovoltaic and wind turbines power systems. Advanced and intelligent control in power electronics and drives, 41-89, 2014.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx