EFECTO DE FILTRADO EN LAS SEÑALES ELECTROCARDIOGRÁFICAS POR MEDIO DE LA APLICACIÓN DE FILTROS BASADOS EN MODELOS POLINOMIALES (FILTERING EFFECT ON ECG SIGNALS THROUGH THE APPLICATION OF FILTERS BASED ON POLYNOMIAL MODEL)

Carlos Mauricio Lastre Domínguez, Aldo Eleazar Pérez Ramos, Rubén Doroteo Castillejos, Roberto Tamar Castellanos Baltazar, Víctor Manuel Jiménez Ramos, Virginia Ortiz Méndez

Resumen


Resumen
De acuerdo con la Organización Mundial de la Salud las enfermedades cardiovasculares (ECV) son la principal causa de muerte en todo el mundo. Por lo tanto, desde hace varias décadas se han diseñado e implementado estrategias para prevenir y/o controlar los factores de riesgo. Recientemente, se han propuesto dispositivos inteligentes que procesan señales de electrocardiografía (ECG) con el propósito de detectar enfermedades cardiacas. Sin embargo, la adquisición y procesamiento de las señales de ECG sigue siendo un tema relevante porque las señales son afectadas por ruido eléctrico y artefactos de movimiento. Por lo tanto, se requieren filtros precisos para eliminar el ruido en estas señales. Este trabajo propone un estudio de aplicar filtros UFIR p-Shift y Savitzky-Golay (S-G) y filtros convencionales en señales ECG con ruido. Los resultados obtenidos indican un rendimiento superior de los filtros basados en modelos polinomiales en comparación con los filtros convencionales, evidenciado por valores promedio de error cuadrático medio de 12.64 y una desviación estándar de 1.49.
Palabras Clave: Estructuras UFIR, Filtro Savitzky-Golay, Señales ECG.

Abstract
According to the World Health Organization (WHO), cardiovascular diseases (CVD) are the leading cause of global mortality. As a result, comprehensive strategies have been devised and implemented over the course of several decades to prevent and/or manage risk factors associated with these conditions. Recently, there have been proposals for smart devices that process electrocardiography (ECG) signals to detect heart diseases. However, the acquisition and processing of ECG signals continue to pose significant challenges due to the interference of electrical noise and motion artifacts. Consequently, the implementation of accurate filters becomes imperative to eliminate noise from these signals. This research puts forth a study that explores the application of UFIR p-Shift and Savitzky-Golay (S-G) filters, as well as conventional filters, on ECG signals contaminated with noise. The findings obtained demonstrate that filters based on polynomial models exhibit superior performance in terms of mean squared error when compared to conventional filters with values 12.64 and a standard deviation of 1.49.
Keywords: ECG signals, UFIR filtering, Savitzky-Golay filter.

Texto completo:

573-589 PDF

Referencias


Amri, M. F., Rizqyaan, M. I., & Turnip, A. (2016). ECG signal processing using offline-wavelet transform method based on ECG-IoT device. 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 1–6.

Basu, S., & Mamud, S. (2020). Comparative Study on the Effect of Order and Cut off Frequency of Butterworth Low Pass Filter for Removal of Noise in ECG Signal. 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), 156–160.

Goldberger A. (2013). Goldberger’s clinical electrocardiography: a simplified approach. Elsevier, 8th, Philadelphia.

Hou, Y., Liu, R., Shu, M., Xie, X., & Chen, C. (2023). Deep Neural Network Denoising Model Based on Sparse Representation Algorithm for ECG Signal. IEEE Transactions on Instrumentation and Measurement, 72, 1–11.

Kiranyaz S. et al., (2022) Blind ECG Restoration by Operational Cycle-GANs, in IEEE Transactions on Biomedical Engineering, vol. 69, no. 12, pp. 3572-3581.

Lastre-Dominguez, C., Shmaliy, Y. S., Ibarra-Manzano, O., & Vazquez-Olguin, M. (2019). Denoising and features extraction of ecg signals in state space using unbiased fir smoothing. IEEE Access, 7, 152166–152178.

Márquez-Figueroa, S., Shmaliy-Yuriy S., & Ibarra-Manzano, O. (2020) Optimal extraction of EMG signal envelope and artifact removal assuming colored measurement noise, Biomedical Signal Processing and Control, 57

McSharry, P. E., Clifford, G., Tarassenko D. L., & Smith L. A. (2003). "A dynamical model for generating synthetic electrocardiogram signals," in IEEE Transactions on Biomedical Engineering, vol. 50, no. 3, pp. 289-294, doi: 10.1109/TBME.2003.808805.

Niyigena, H. et al., (2022). Analysis of ECG Signals by Dynamic Mode Decomposition," in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 5, pp. 2124-2135.

Punjabi, N. P., Sahdev, N., & Punjabi, P. P. (2017). Book review: Goldberger’s Clinical Electrocardiography. 9 th Edition. A Simplified Approach. Perfusion, 32(8), 709–709.

Ramirez-Echeverria, F., Sarr, A., & Shmaliy, Y. S. (2014). Optimal memory for discrete-time FIR filters in state-space. IEEE Transactions on Signal Processing, 62(3), 557–561.

Savitzky, A. & Golay, M. J. (1964). Analytical Chemistry 36 (8), 1627-1639.

Schafer, R. (2011). What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Processing Magazine, 28(4), 111–117.

Shmaliy, Y. S. (2006). An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(5), 862–869.

Shmaliy, Y. S., & Morales-Mendoza, L. J. (2010). FIR smoothing of discrete-time polynomial signals in state space. IEEE Transactions on Signal Processing, 58(5), 2544–2555.

Shmaliy, Y., & Zhao, S. (2022). Optimal and Robust State Estimation: Finite Impulse Response and Kalman Approaches. John Wiley & Sons, Inc – IEEE Press, Hoboken, NJ.

Shmaliy, Y. S., S. Zhao & C. K. Ahn, (2017), Unbiased Finite Impulse Response Filtering: An Iterative Alternative to Kalman Filtering Ignoring Noise and Initial Conditions, in IEEE Control Systems Magazine, vol. 37, no. 5, pp. 70-89, Oct. doi: 10.1109/MCS.2017.2718830.

Tripathy, R. K., Dash, D. K., Ghosh S. K. & Pachori R. B., (2023) Detection of Different Stages of Anxiety From Single-Channel Wearable ECG Sensor Signal Using Fourier–Bessel Domain Adaptive Wavelet Transform, in IEEE Sensors Letters, vol. 7, no. 5, pp. 1-4, Art no. 7002304.

Vazquez-Olguin, M., Seemenovich Shmaliy, Y., Ki Ahn, C., & Ibarra-Manzano, O. G. (2017). Blind Robust Estimation With Missing Data for Smart Sensors Using UFIR Filtering. IEEE Sensor Journal, 17(January), 1819–1827.

Wasimuddin, M., Elleithy K., Abuzneid A. -S., Faezipour M. & Abuzaghleh O., (2020) Stages-Based ECG Signal Analysis From Traditional Signal Processing to Machine Learning Approaches: A Survey, in IEEE Access, vol. 8, pp. 177782-177803.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas