DISEÑO E IMPLEMENTACIÓN DE UN OXÍMETRO DE PULSO BLUETOOTH DE BAJA ENERGÍA (DESIGN AND IMPLEMENTATION OF A BLUETOOTH LOW ENERGY PULSE OXIMETER)

Aldo Eleazar Pérez Ramos, Alejandra Salazar Peña, Alejandra Estupiñán Villarreal, César Giovani Tavera Ruiz, Dulce Ofelia Vázquez Pacheco, Víctor Manuel Jiménez Ramos

Resumen


Resumen
Recientemente, oxímetros de pulso comerciales se han utilizado masivamente para monitorear frecuencia cardiaca (FC) y saturación periférica de oxígeno (SpO2) en personas infectadas con COVID-19. El monitoreo de estos signos vitales es relevante para detectar oportunamente casos de hipoxemia. Sin embargo, investigaciones recientes mostraron que las mediciones realizadas con este tipo de oxímetros son inexactas. Además, estos carecen de módulos de comunicación para habilitar novedosos sistemas de monitoreo remoto. En este trabajo se presenta un sistema embebido biomédico (SE-BM) diseñado para medir y transmitir hacia dispositivos Bluetooth LE, señales de fotopletismografía (PPG), FC y SpO2. La evaluación del prototipo se realizó examinando la morfología de las señales PPG digitalizadas. Además, se determinó el error y concordancia entre mediciones de FC y SpO2 proporcionadas por el SE-BM y por un oxímetro de pulso FDA. Los resultados obtenidos confirman que el sistema embebido propuesto entrega mediciones confiables en los casos evaluados.
Palabras Clave: Fotopletimografía, MAX30101, oxímetro inalámbrico, PIC18F.

Abstract
Recently, commercial pulse oximeters have been widely used to monitor heart rate (HR) and peripheral oxygen saturation (SpO2) in people infected with COVID-19. The monitoring of these vital signs is relevant to timely detect cases of hypoxemia. However, recent works has shown that measurements performed with this kind of oximeters are inaccurate. Furthermore, these do not have communication modules to enable novel remote monitoring systems. This paper presents a biomedical embedded system (SE-BM) designed to measure and transmit to Bluetooth LE devices, photoplethysmography (PPG), HR and SpO2 signals. Prototype evaluation was performed by examining the morphology of digitized PPG signals. In addition, the error and agreement between HR and SpO2 measurements provided by SE-BM and by an FDA pulse oximeter were determined. The results obtained confirm that the proposed embedded system delivers reliable measurements in evaluated cases.
Keywords: MAX30101, photopleismography, PIC18F, wireless oximeter.

Texto completo:

632-652 PDF

Referencias


Argüello-Prada, E. J., (2019). The mountaineer’s method for peak detection in photoplethysmographic signals. Revista Facultad de Ingeniería Universidad de Antioquia, (90), 42-50.

Ayance, A. T., Ramírez & Palacios, C. G. T. (2018). Low-cost microcon-trolled based wireless heart rate and oxygen saturation monitor. In 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP) (pp. 176-180). IEEE.

Bakhri, S., Rosiana, E. & Saputra, R. C., (2020). Design of low cost pulse oximetry based on Raspberry Pi. In Journal of Physics: Conference Series (Vol. 1501, No. 1, p. 012003). IOP Publishing.ISO 690.

Guo, L., Jin, Z. & Wang, E., (2021). Silent hypoxemia in patients with COVID-19 pneumonia: a review. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 27, e930776-1.

Harskamp, R. E., Bekker, L. & Lucassen, W. A., (2021). Performance of popular pulse oximeters compared with simultaneous arterial oxygen saturation or clinical-grade pulse oximetry: a cross-sectional validation study in intensive care patients. BMJ open respiratory research, 8(1), e000939.

Hernández, M. L., Romero-Cabello, R. & Fonseca Mata, J. J., (2022). Clinical identification and severity in patients with COVID-19. Revista médica del Hospital General de México, 85(1), 7-16.

Hudson, A. J., Benjamin, J. & Schultheis, L., (2018). Clinical interpretation of peripheral pulse oximeters labeled “not for medical use”. The Annals of Family Medicine, 16(6), 552-554.

Martínez Hornak, L., Morales, I. & Oreggioni, J., (2022). Wearable device prototype for vital signs monitoring. In XII Congreso Argentino de Sistemas Embebidos (CASE2022), UNLP, La Plata, Buenos Aires, Argentina, 18-19 ago. 2022, pp. 1-3.

Maxim Integrated Products, Inc., (2014). Application Note 6845 Guidelines for SPO2 Measurement using the Maxim, MAX30101.

Naeem, Z. H., Youseffi, M. & Abd Wahab, M. H. , (2021). Design and Development of a Low Cost Pulse Oximeter. In Journal of Physics: Conference Series (Vol. 1793, No. 1, p. 012068). IOP Publishing.

Nemomssa, H. D. & Raj, H., (2022). Development of Low-Cost and Portable Pulse Oximeter Device with Improved Accuracy and Accessibility. Medical Devices: Evidence and Research, 121-129.

Ndiaye, M., Oyewobi, S. S. & Djouani, K., (2020). IoT in the wake of COVID-19: A survey on contributions, challenges and evolution. IEEE Access, 8, 186821-186839.

Organización Mundial de la Salud, (‎2020)‎. Atención en el domicilio a casos sospechosos o confirmados de COVID-19 y manejo de sus contactos: orientaciones provisionales, 12 de agosto de 2020. Organización Mundial de la Salud. https://apps.who.int/iris/handle/10665/333967.

Quaresima, V. & Ferrari, M., (2020). COVID-19: efficacy of prehospital pulse oximetry for early detection of silent hypoxemia. Critical Care, 24(1), 1-2.

Sepponen, R., (2011). Development of a fractional multi-wavelength pulse oximetry algorithm. Diss. Aalto University.

Suhartina, R. & Abuzairi, T., (2021). Pulse oximeter monitoring bracelet for COVID-19 patient using seeeduino. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 81-87.

Smith, R. N. & Hofmeyr, R., (2019). Perioperative comparison of the agreement between a portable fingertip pulse oximeter v. a conventional bedside pulse oximeter in adult patients (COMFORT trial). South African Medical Journal, 109(3), 154-158.

Tamura, T., (2019). Current progress of photoplethysmography and SPO2 for health monitoring. Biomedical engineering letters, 9(1), 21-36.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas