CORRELACIÓN DE FASE APLICADA A LA NAVEGACIÓN DE VEHÍCULOS AUTÓNOMOS EN ENTORNOS TECHADOS (PHASE CORRELATION APPLIED TO AUTONOMOUS VEHICLE NAVIGATION IN ROOFED ENVIRONMENTS)

Rosebet Miranda Luna, Raul Cruz Barbosa, Antonio Orantes Molina, José Anibal Arias Aguilar, Alberto Elías Petrilli Barceló

Resumen


Resumen
En este artículo consideramos el problema de la navegación autónoma del vehículo AutoNOMOS-mini-V2 en entornos techados. Este vehículo carece de un sistema de posicionamiento global GPS, por lo que se evalúa la técnica de correlación de fase para estimar la posición con respecto a una secuencia de imágenes indexada y adquirida con la cámara de video rgb del vehículo que apunta hacia arriba, y se determinan las condiciones bajo las cuales la técnica funciona. La metodología propuesta se probó con imágenes de 3 diferentes techos, obteniéndose errores máximos de 5.8 cm y 1° en la estimación de desplazamientos y orientación, respectivamente. Los resultados obtenidos indican que el método propuesto es eficiente para techos con alturas mayor o igual a 3 m.
Palabras Clave: Guiado visual, Visión por computador, Odometría visual, Registro de imágenes.

Abstract
In this article we focus in the autonomous navigation of AutoNOMOS-mini-v2 vehicle in roofed environments. The vehicle does not have a GPS positioning system, so we evaluate the phase correlation technique to estimate its position using an indexed sequence of images acquired with the rgb camera pointing to the roof, we determine the conditions for the technique to work. Our proposed method was tested in images of 3 different roofs, getting maximum errors of 5.8 cm and 1º in the displacement and orientation respectively. Obtained results show that the proposed algorithm is efficient for roofs with heights equal or greater than 3 m.
Keywords: Visual guidance, Computer vision, Visual odometry, Image registration.

Texto completo:

596-614 PDF

Referencias


Bertozzi, M., et al. Viac: An out of ordinary experiment. Comunicación presentada en 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden, Germany. Junio, 2011.

Bimbraw, K. Autonomous Cars: Past, Present and Future - A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology. Comunicación presentada en Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015). Colmar, Francia. Enero, 2015.

Blanc, G., Mezouar, Y., & Martinet, P. Indoor Navigation of a Wheeled Movile Robot along Visual Routes. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. España. Abril, 2005.

Courbon, J., et al. Vision-based navigation of unmanned aerial vehicles. ELSEVIER, Control Engineering Practice, Vol. 18, No. 7, 789–799, 2010.

Cucchiara, R., Perini E., & Pistoni G. Efficient stereo visión for obstacle detection and AGV Navigation. 14th International conference on Image Analysis and Processing – ICIAP 2007.

Dryanovski, I., Valenti, R. G., & Xiao, J. An open-source navigation system for micro aerial vehicles. Auton Robot, Vol 34, No. 3, 177–188, 2013.

Funke, J., et al. Up to the limits: Autonomous Audi TTS. Comunicación presentada en 2012 IEEE Intelligent Vehicles Symposium (IV). Alcala de Henares, España. Junio, 2012.

Girvés, V., Armesto, L., Tornero, J., & Solanes, J. E. Continuous-curvature kinematic control for path following problems. IEEE RSJ International Conference on Intelligent Robts and Systems. San Francisco CA. Septiembre, 2011.

Haslehurst, R., Lewis, A., & Moran, J. Mapping the Road to Autonomous Vehicles, L.E.K. Consulting / Executive Insights, Vol. XIX, No. 58, 2017.

Huang, Y., et al. Image-Based Localization for Indoor Environment Using Mobile Phone. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4(W5), 211-215, 2015.

Jianbo, Z. J., et al. Semantic Segmentation based Dense RGB-D SLAM in Dynamic Environments. Journal of Physics: Conference Series, No. 1267, 1-7, 2019.

Kazama K., et al. Vehicle position estimation based on road area detection and image registration. Transactions of the JSME, Vol. 83, No. 849, 1-12, 2017.

Krisada, K., & Gerdes, J. C. Autonomous vehicle control at the limits of handling. International Journal of Vehicle Autonomous Systems, Vol. 10, No. 4, 271-296, 2012.

Levinson, J., & Thrun, S. Robust vehicle localization in urban environments using probabilistic maps. Comunicación presentada en 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA. Mayo, 2010.

Lingyan, R. L., et al. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images. Sensors, Vol. 17, No. 1341, 1-18, 2017.

Miranda, L. R., et al. Mosaicing of Bladder Endoscopic Image Sequences: Distortion Calibration and Registration Algorithm. IEEE Transactions on Biomedical Engineering, Vol. 55, No. 2, 541-553, 2008.

Moore, A. J., et al. Testing Enabling Technologies for Safe UAS Urban Operations. Comunicación presentada en AIAA AVIATION Forum. Atlanta, GA. Junio, 2018.

Ojansivu, V., & Heikkilä, J. Image Registration Using Blur-Invariant Phase Correlation. IEEE Signal Processing Letters, Vol. 14, No. 7, 449-452, 2007.

Open source robotic foundation. Camera calibration. Recuperado el 05 de septiembre de 2017 de http://wiki.ros.org/camera_calibration.

Saab, S. S., & Nakad, Z. S. A Standalone RFID Indoor Positioning System Using Passive Tags. IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, 1961-1970, 2011.

Shuji, O. S., et al. SeqSLAM++: View-based robot localization and navigation. Robotics and Autonomous Systems, No. 112, 13–21, 2019.

Singandhupe, A., & La, H. M. A Review of SLAM Techniques and Security in Autonomous Driving. Comunicación presentada en IEEE International Conference on Robotic Computing (IRC). Naples, Italia. Febrero, 2019.

Srinivasa, R. B., & Chatterji, B. N. An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration. IEEE Transactions on Image Processing, Vol. 5, No. 8, 1266-1271, 1996.

Stephan, W. S., Scaramuzza, D., & Siegwar, R. Monocular‐SLAM–based navigation for autonomous micro helicopters in GPS-denied environments. Journal of field robotics, Vol. 28, No. 6, 854-874, 2011.

Xing, W., Peihuang, L., Jun, Y., Xiaoming, Q., & Dunbing, T. Intersection Recognition and Guide-Path Selection for a Vision-based AGV in a Bidirectional Flow Network. International Journal of advanced Robotic Systems, Vol. 11, No. 3, 1-17, 2014.

Xu, D., Han, L., Tan, M., & Li, F. Ceiling-Based Visual Positioning for an indoor Movile Robot With Monocular Vision. IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, 1617-1628, mayo, 2009.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas