DEPÓSITO DE MICROESTRUCTURAS DE ZNO CON INCORPORACIÓN DE NANOPARTICULAS DE PLATA PARA SER APLICADO COMO SENSOR DE GASES (DEPOSITION OF ZNO MICROSTRUCTURES WITH INCORPORATION OF SILVER NANOPARTICLES TO BE APPLIED AS A GAS SENSOR)
Resumen
Las microestructuras de óxido de zinc (ZnO) son semiconductores que buscan mejorar las propiedades eléctricas, ópticas y mecánicas. Diferentes métodos han sido empleados para la alteración de su superficie, sin embargo, éstos requieren de procesos complejos y elevados en sus costos. En este trabajo se propone realizar el depósito de microestructuras de óxido de ZnO, para ser incorporadas con nanopartículas de plata (AgNPs) para modificar sus propiedades eléctricas. Esta alteración de la superficie permite potenciales aplicaciones de este material como sensor de gases. Las AgNPs fueron sintetizadas por la técnica de electrolisis e incorporadas en la superficie del semiconductor mediante microaspersión. A través de un sistema de depósito por vapor químico (CVD) se realizó una serie de experimentos utilizando un precursor de zinc en forma de micro traza para la obtención de una película activa. Se midió la resistividad eléctrica de las películas en presencia de atmosfera y presión controladas.
Palabras Clave: Nanopartículas, Plata, Zinc, CVD, Resistividad
Abstract
Zinc oxide (ZnO) microstructures are semiconductors searching to improve electrical, optical, and mechanical properties. Different methods have been used to modify its surface; however, these require complex processes and high costs. In this work, it is proposed to carry out the deposit of ZnO oxide microstructures, to be incorporated with silver nanoparticles (AgNPs) to modify their electrical properties. This alteration of the surface allows potential applications of this material as a gas sensor. The AgNPs were synthesized by the electrolysis technique and incorporated into the semiconductor surface by microsprinkling. Through a chemical vapor deposition (CVD) system, a series of experiments were carried out using a zinc precursor in the form of microtrace to obtain an active film. The electrical resistivity of the films was measured in the presence of a controlled atmosphere and pressure.
Keywords: Nanoparticles, Silver, Zinc, CVD, Resistivity.
Texto completo:
244-259 PDFReferencias
A. A. Mane and A. V. Moholkar, Orthorhombic MoO 3 nanobelts based NO 2 gas sensor, Appl. Surf. Sci., vol. 405, pp. 427–440, 2017, doi: 10.1016/j.apsusc.2017.02.055.
A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 229, no. December 2017, pp. 206–217, 2018, doi: 10.1016/j.mseb.2017.12.036.
A. J. Gimenez and J. M. Ya, ZnO - Paper Based Photoconductive UV Sensor, vol. 2, no. 3, pp. 282–287, 2011.
A. Kuoni and M. Boillat, Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor, 2003.
A. Labidi et al., Impedance spectroscopy on WO3 gas sensor, Sensors Actuators, B Chem., vol. 106, no. 2, pp. 713–718, 2005, doi: 10.1016/j.snb.2004.09.022.
B. Chitara, D. J. Late, S. B. Krupanidhi, and C. N. R. Rao, Room-temperature gas sensors based on gallium nitride nanoparticles, Solid State Commun., vol. 150, no. 41–42, pp. 2053–2056, 2010, doi: 10.1016/j.ssc.2010.08.007.
C. Cheng, G. Xu, H. Zhang, and Y. Luo, Fabricating ZnO nanorods sensor for chemical gas detection at room temperature, J. Nanosci. Nanotechnol., vol. 7, no. 12, pp. 4439–4442, 2007, doi: 10.1166/jnn.2007.864.
C. Y. Lu, S. P. Chang, and S. J. Chang, ZnO nanowire-based oxygen gas sensor, 2008 IEEE Int. Conf. Electron Devices Solid-State Circuits, EDSSC, vol. 9, no. 4, pp. 485–489, 2008, doi: 10.1109/EDSSC.2008.4760698.
D. Han and M. Zhao, Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level, J. Alloys Compd., vol. 815, p. 152406, 2020, doi: 10.1016/j.jallcom.2019.152406.
I. K. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz, and A. L. Kholkin, Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method, Nanotechnology, vol. 21, no. 23, 2010, doi: 10.1088/0957-4484/21/23/235703.
I. Krstev, A. Helwig, G. Müller, J. Garrido, and M. Stutzmann, Detection of random vapour concentrations using an integrating diamond gas sensor, Sensors Actuators, B Chem., vol. 195, pp. 603–608, 2014, doi: 10.1016/j.snb.2014.01.093.
K. Liu, M. Sakurai, Photodetectors, ZnO-Based Ultraviolet Photodetectors, pp. 8604–8634, 2010, doi: 10.3390/s100908604.
K. Ozga et al., Second order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films, Nanotechnology, vol. 19, no. 18, 2008, doi: 10.1088/0957-4484/19/18/185709.
L. F. Dong, Z. L. Cui, and Z. K. Zhang, Gas sensing properties of nano-ZnO prepared by arc plasma method, Nanostructured Mater., vol. 8, no. 7, pp. 815–823, 1997, doi: 10.1016/S0965-9773(98)00005-1.
L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensors Actuators, A Phys., vol. 267, pp. 242–261, 2017, doi: 10.1016/j.sna.2017.10.021.
M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, and G. Sberveglieri, Characterization of a nanosized TiO2 gas sensor, Nanostructured Mater., vol. 7, no. 7, pp. 709–718, 1996, doi: 10.1016/S0965-9773(96)00050-5.
N. Yamazoe, N. Miura, K. Moriya, T. Jinkawa, J. Tamaki, and H. Yamaura, Indium oxide-based gas sensor for selective detection of CO, Sensors Actuators B Chem., vol. 36, no. 1–3, pp. 325–332, 1996.
R. Georgekutty, M. K. Seery, and S. C. Pillai, A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism, J. Phys. Chem. C, vol. 112, no. 35, pp. 13563–13570, 2008, doi: 10.1021/jp802729a.
S. Nyembe et al., Indium phosphide nanowires: Synthesis and integration into a gas sensing device, Sensors Actuators, B Chem., vol. 333, no. November 2020, p. 129552, 2021, doi: 10.1016/j.snb.2021.129552.
S. Vyas, A short review on: Optimization techniques of ZnO based thin film transistors, Chinese J. Phys., vol. 56, no. 1, pp. 117–124, 2018, doi: 10.1016/j.cjph.2017.12.002.
Y. Gui, S. Li, J. Xu, and C. Li, Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature, Microelectronics J., vol. 39, no. 9, pp. 1120–1125, 2008, doi: 10.1016/j.mejo.2008.01.052.
Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology, vol. 19, no. 9, 2008, doi: 10.1088/0957-4484/19/9/095508.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx