ANÁLISIS DE RUIDO DE COLORES EN UN CIRCUITO RLC SERIE DE FORMA EXPERIMENTAL (COLOR NOISE ANALYSIS IN A SERIAL CIRCUIT RLC EXPERIMENTALLY)

Carlos Alejandro Crisantos, Joaquín Hernández Santiago, Beatris Adriana Escobedo Trujillo, Javier Garrido Meléndez

Resumen


Resumen
La contribución principal de este trabajo es determinar el color del ruido de forma experimental analizando la densidad espectral de potencia (PSD) de una señal medida en un sistema eléctrico, para esto, se generan y simulan los ruidos de colores (blanco, rosa, rojo, azul y violeta) mediante el software Matlab para alimentar a un circuito RLC serie y analizar el color de ruido presente, lo anterior se realiza en cuatro escenarios diferentes: Ruido, Fuente de Señal CD + Ruido, Fuente de CA + Ruido y Fuente de CD + CA + Ruido, las mediciones se realizan con un sistema de adquisición de datos y el software LabVIEW. Los resultados obtenidos identifican que los ruidos de colores generados y medidos tienen el mismo comportamiento, además, se presentan los resultados de medir el circuito RLC alimentado con solo una fuente de CD para identificar el ruido de color presente en el sistema.
Palabras Clave: Circuito RLC, Densidad Espectral de Potencia, Ruido de colores.

Abstract
The main contribution of this work is to determine the noise color experimentally by analyzing the power spectral density (PSD) of a signal measured in an electrical system, for this, colored noises (white, pink, red, blue, and violet) are generated and simulated using Matlab software to feed a serial RLC circuit and analyze the noise color present, the above is performed in four different scenarios: Noise, DC Signal Source + Noise, AC Source + Noise and DC Source+ AC Source+ Noise, the measurements are performed using a data acquisition system and LabVIEW software. The results obtained identify that the generated and measured color noise have the same behavior, in addition, the results of measuring the RLC circuit powered with only a DC source are presented to identify the color noise present in the system.
Keywords: Noise Colors, Power Spectral Density, RLC Circuit.

Texto completo:

314-329 PDF

Referencias


Billah, K., & Shinozuka, M. (15 de 12 de 1990). Numerical method for colored-noise generation and its application to a bistable system. The American Physical Society, 42(12), 7492-7495. doi:https://doi.org/10.1103/PhysRevA.42.7492

Charles K, A., & Matthew N.O, S. (2013). FUNDAMENTOS DE CIRCUITOS ELÉCTRICOSFUNDAMENTOS DE CIRCUITOS ELÉCTRICOS (Vol. 5). Cleveland Cleveland State University, Prairie View A&M University, Estados unidos: McGRAW-HILL.

Deng, W., & Fossum, E. R. (2019). 1/f Noise Modelling and Characterization for CMOS. Sensor, 1-16.

Farnoosh, R., Nabati, P., Rezaeyan, R., & Ebrahimi, M. (03 de 2011). A stochastic perspective of RL electrical circuit using different noise terms. COMPEL International Journal of Computations and Mathematics in Electrical, 812-822. doi:10.1108/03321641111101221

Fox, R. F., Gatland, I. R., & Roy, R. V. (01 de 11 de 1988). Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Physical Review A (General Physics), 38(11), 5938-5940. doi: 10.1103/PhysRevA.38.5938

Fragasso, A., Pud, S., & Dekker, C. (2019). 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology, 30(39), 1-16.

Gradziuk, G., Torregrosa, G., & Broedersz, C. P. (2022). Irreversibility in linear systems with colored noise. Phys. Rev. E, 1-11.

Häunggi, P., & Jung, P. (01 de 01 de 1995). Colored Noise in Dynamical Systems. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/9780470141489.ch4

Kasdin, J. (05 de 1995). Discrete Simulation of Colored Noise and Stochastic Processes and 1/fα Power Law Noise Generation. Proceedings of the IEEE, 83(5), 802-827. doi:10.1109/5.381848

Kennedy, H. L. (2020). Improving the frequency response of Savitzky-Golay filters via colored-noise models. Digital Signal Processing, 102, 1-16.

Moss, F. (1989). Noise in nonlinear dynamical systems. New York, US: Cambridge University Press.

Nabati, P., & Farnoosh, R. (10 de 04 de 2021). Stochastic approach for noise analysis and parameter estimation for RC and RLC electrical circuits. International Journal of Nonlinear Analysis and Applications, 12(1), 433-444. doi: 10.22075/IJNAA.2021.4820

Santos, E., Mahdi, K., Lima, M., Cerqueira, A., Duque, C., & Yona, A. (25 de 10 de 2019). High Accuracy Power Quality Evaluation under a Colored Noisy Condition by Filter Bank ESPRIT. Electronics, 1-28. doi: https://doi.org/10.3390/electronics8111259

Vasilescu, G. (2005). Electronic Noise and Interfering Signals. berlin: Springer.

Wolf, D. (1978). Noise in Physical Systems. Berlin, Germany: Springer-Verlag Berlin Heidelberg 1978. doi: https://doi.org/10.1007/978-3-642-87640-0

Zhivomirov, H. (01 de 01 de 2018). A Method for Colored Noise Generation. The Romanian Journal of Acoustics and Vibration, 15(1), 14-19.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas