MANIPULACIÓN DEL ROBOT UR3 MEDIANTE ROS Y URSIM (MANIPULATION OF THE UR3 ROBOT BY ROS AND URSIM)

Hermes Fabián Vargas Rosero, Oscar Andrés Vivas Albán, Víctor Fernando Muñoz Martínez

Resumen


Resumen
El presente artículo muestra la implementación de un sistema para la manipulación del robot UR3 de Universal Robots, por medio de un gamepad y utilizando el framework ROS. Se muestra el modelo del robot y las herramientas necesarias para la simulación paso a paso del robot, utilizando el software URSim del fabricante, como paso previo a la manipulación real. Se configura un gamepad de manera que pueda enviar las señales cartesianas deseadas al robot, simulado o real, vía ROS. Los resultados muestran una correspondencia entre los movimientos obtenidos del robot en URSim con los movimientos reales del robot UR3.
Palabras claves: Manipulación de robots, Robot UR3, robots colaborativos, ROS, URSim.

Abstract
This article shows the implementation of a system for the manipulation of the Universal Robots UR3 robot, by means of a gamepad and using the ROS framework. The robot model and the necessary tools for the step-by-step simulation of the robot are shown, using the manufacturer's URSim software, as a previous step to the real manipulation. A gamepad is configured so that it can send the desired Cartesian signals to the robot, simulated or real, via ROS. The results show a correspondence between the movements obtained from the robot in URSim with the real movements of the UR3 robot.
Keywords: Robot manipulation, UR3 Robot, collaborative robots, ROS, URSim.

Texto completo:

841-857 PDF

Referencias


Abdelaziz, O., Luo, M., Jiang, G., & Chen, S., (2019). Multiple configurations for puncturing robot positioning. https://doi.org/10.48550/arXiv.1903.02281.

Bonaiuto, S., Cannavò, A., Piumatti, G., Paravati G. and Lamberti, F., (2017). Tele-operation of Robot Teams: A Comparison of Gamepad-, Mobile Device and Hand Tracking-Based User Interfaces. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), 2017, pp. 555-560, doi: 10.1109/COMPSAC.2017.278.

Cambel A. Kinematic of Universal Robots on Python, (2022). ur_ikfast. https://github.com/cambel/ur_ikfast (Original work published 2019).

Görner, M., Haschke, R., Ritter, H., & Zhang, J., (2019). MoveIt! Task Constructor for Task-Level Motion Planning. 2019 International Conference on Robotics and Automation (ICRA), 190–196. https://doi.org/10.1109/ICRA.2019.8793898.

Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H., (2015). RViz: a toolkit for real domain data visualization. Telecommunication Systems, 60(2), 337–345. https://doi.org/10.1007/s11235-015-0034-5.

Kinetic/Installation/Ubuntu - ROS Wiki. (2022). Retrieved June 21, 2022, from http://wiki.ros.org/kinetic/Installation/Ubuntu.

Khaleda, Sh., Wassan, R., (2017) Wireless Mobile Robotic Arm Controlled by PS2 Joystick Based on Microcontroller. Diyala Journal of Engineering Sciences. 10. 44-53. 10.24237/djes.2017.10304.

Knudsen, M., & Kai̇vo-oja, J., (2020). Collaborative Robots: Frontiers of Current Literature. Journal of Intelligent Systems: Theory and Applications, 3(2), 13–20. https://doi.org/10.38016/jista.682479.

Koenig, N., & Howard, A., (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 3, 2149–2154 vol.3. https://doi.org/10.1109/IROS.2004.1389727.

Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., & Krug, R., (2018). Interactive, Collaborative Robots: Challenges and Opportunities. 18–25. https://www.ijcai.org/proceedings/2018/3.

Mishra, R., & Javed, A., (2018). ROS based service robot platform. 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 55–59. https://doi.org/10.1109/ICCAR.2018.8384644.

Mohammadi, M., Knoche, H., Gaihede, M., Bentsen B. and Andreasen L., (2019). A high-resolution tongue-based joystick to enable robot control for individuals with severe disabilities. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019, pp. 1043-1048, doi: 10.1109/ICORR.2019.8779434.

Rahman, R., Rahman, M., and Bhuiyan, J. R., (2019). Joystick controlled industrial robotic system with robotic arm. 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), 2019, pp. 31-34, doi: 10.1109/RAAICON48939.2019.18.

ROS/Tutorials - ROS Wiki., (2022). Retrieved June 16, 2022, from http://wiki.ros.org/ROS/Tutorials.

Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K., (2020). Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), 1–5. https://doi.org/10.1109/ICETST49965.2020.9080724.

Universal Robots - Offline Simulator - CB-Series - Non Linux - URSim 3.14.3., (2022). Retrieved June 21, 2022, from https://www.universal-robots.com/download/software-cb-series/simulator-non-linux/offline-simulator-cb-series-non-linux-ursim-3143/.

Universal_Robots_ROS_Driver, (2022). Universal Robots A/S. https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/blob/696cbb334a0b76a2d18e26994adc158768ddba0b/ur_robot_driver/doc/install_urcap_e_series.md (Original work published 2019).

UR modern driver, (2022). ROS-Industrial. https://github.com/ros-industrial/ ur_modern_driver (Original work published 2015).

Vargas F. Control de robot UR3 mediante un gamepad, (2022). https://github.com/fabiavargasr/gamepad2robotur3 (Original work published 2022).

Wagner, M., et al., (2016). Gamepad Control for Industrial Robots - New Ideas for the Improvement of Existing Control Devices.” ICINCO (2016).

Whitney, D., Rosen, E., Ullman, D., Phillips, E., & Tellex, S., (2018). ROS Reality: A Virtual Reality Framework Using Consumer-Grade Hardware for ROS-Enabled Robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–9. https://doi.org/10.1109/IROS.2018.8593513.

Zhi, L., & Xuesong, M., (2018). Navigation and Control System of Mobile Robot Based on ROS. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 368–372. https://doi.org/10.1109/IAEAC.2018.8577901.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas