DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE ELECTROMIOGRAFÍA SUPERFICIAL BLUETOOTH PARA MONITOREAR FRECUENCIA RESPIRATORIA (DESIGN AND IMPLEMENTATION OF A BLUETOOTH SUPERFICIAL ELECTROMYOGRAPHY SYSTEM FOR RESPIRATORY RATE MONITORING)

Norma Patricia Correa Ramírez, Josué Hueto López, Aldo Eleazar Pérez Ramos, Javier Ezequiel Fuentes García, Yesenia González Guzmán, Juan José Martínez Caballero

Resumen


Resumen
Recientemente, trabajos de investigación sugieren que el monitoreo continuo de la frecuencia respiratoria (FR) por medio sistemas biomédicos de contacto permitiría la detección oportuna de enfermedades cardiacas, respiratorias, apnea del sueño, entre otras. Sin embargo, los sistemas propuestos son costosos y de diseño complejos. Además, se enfocan hacia el monitoreo de pacientes dentro de hospitales o clínicas. En este artículo se presenta el diseño de un de sistema biomédico Bluetooth de baja complejidad para monitorear FR de personas en entornos domésticos. El sistema propuesto digitaliza señales de electromiografía superficial (sEMG) y de electrocardiografía (ECG), las transmite hacia un dispositivo recolector en donde las procesa digitalmente para determinar la FR. El funcionamiento del sistema fue evaluado en laboratorio y en un ambiente doméstico. La FR determinada por el sistema propuesto se comparó minuto a minuto con un método de referencia. Los resultados ratifican el correcto funcionamiento del sistema propuesto en ambientes con ruido eléctrico.
Palabras Clave: Electromiografía, electrocardiografía, frecuencia respiratoria, PIC16F.

Abstract
Recently, research works have shown that continuous monitoring of respiratory rate (RR) through contact biomedical systems would allow timely detection of heart, respiratory, and sleep apnea diseases, among others. However, proposed systems are expensive and design complex. In addition, these systems are focused on monitoring patients within hospitals or clinics. This article presents the design of a low complex Bluetooth biomedical system to monitor RR of people in domestic environments. The proposed system digitizes surface electromyography (sEMG) and electrocardiography (ECG) signals, transmits them to a collecting device where these signals are digitally processed to determine RR. The system’s performance was evaluated in laboratory and domestic environment. The RR determined by the proposed system was compared minute by minute with a reference method. The results ratify the correct functioning of the proposed system in environments with electrical noise.
Keywords: Electrocardiography, electromyography, PIC16F, respiratory rate.

Texto completo:

311-330 PDF

Referencias


Charlton, P. H., Birrenkott, D. A., Bonnici, T., Pimentel, M. A., Johnson, A. E., Alastruey, J., & Clifton, D. A. (2017). Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review. IEEE reviews in biomedical engineering, 11, 2-20.

Elgendi, M. (2020). PPG Signal Analysis: An Introduction Using MATLAB®. CRC Press.

Hernandez-Aguila, M., Olvera-Cervantes, J.L., Perez-Ramos, A.E. et al. (2022). Methodology for the determination of human respiration rate by using Doppler radar and Empirical Modal Decomposition. Sci Rep 12, 8675.

Hill, A., Kelly, E., Horswill, M.S., Watson, M.O., (2018). The effects of awareness and count duration on adult respiratory rate measurements: An experimental study. J. Clin. Nurs, 27, 546–554.

Kester, W. What the Nyquist criterion means to your sampled data system design. Analog Devices, 1-12, (2009).

Maarsingh, E. J. W., Van Eykern, L. A., Sprikkelman, A. B., Hoekstra, M. O., & Van Aalderen, W. M. C., (2000). Respiratory muscle activity measured with a noninvasive EMG technique: technical aspects and reproducibility. Journal of Applied Physiology, 88(6), 1955-1961.

Mikroe-EMG. (2022). Time saving embedded tools - EMG click. Available in: https://download.mikroe.com/documents/add-on-boards/emg/emg-click-schematic.pdf.

Nicolò, A., Massaroni, C., Schena, E., & Sacchetti, M., (2020). The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors, 20(21), 6396.

Ràfols-de-Urquía, M., Estrada, L., Estévez-Piorno, J., Sarlabous, L., Jané, R., & Torres, A., (2018). Evaluation of a wearable device to determine cardiorespiratory parameters from surface diaphragm electromyography. IEEE Journal of Biomedical and Health Informatics, 23(5), 1964-1971.

Rolfe, S., (2019). The importance of respiratory rate monitoring. British Journal of Nursing, 28(8), 504-508.

Subbe, C., & Kinsella, S., (2018). Continuous Monitoring of Respiratory Rate in Emergency Admissions: Evaluation of the RespiraSenseTM Sensor in Acute Care Compared to the Industry Standard and Gold Standard. Sensors, 18, 2700.






URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.    

TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA

Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 461 61 17575 Ext 5450 y 5146

pistaseducativas@itcelaya.edu.mx

http://pistaseducativas.celaya.tecnm.mx/index.php/pistas