EVALUACIÓN TÉRMICA DE UN SECADOR SOLAR PARA LA OBTENCIÓN DE CAFÉ PERGAMINO EN LA REGION CAFETALERA DE LA MIXTECA OAXAQUEÑA (THERMAL EVALUATION OF SOLAR DRYER FOR OBTAINING PARCHMENT COFFEE IN MIXTECA COFFEE REGION OF OAXACA)
Resumen
En el proceso para obtener café seco a partir de café cereza, el secado es una etapa fundamental, ya que se debe disminuir el contenido de humedad del café lavado (48 a 56% en base húmeda) a un rango que oscile entre el 10 y 12 % de humedad, niveles apropiados para inhibir la formación de hongos y evitar que el grano sufra daños en su aspecto físico y composición química. Para la evaluación se utilizó un secador solar semi parabólico directo tipo pasivo, donde la cubierta total se considera como el colector. La máxima diferencia de temperatura entre el interior del secador y el ambiente fue de 10 °C. La eficiencia térmica del secador por mes fue de 11 % promedio para la temporada de cosecha. Los resultados demuestran que el secador es apto para obtener café pergamino seco a nivel de pequeños productores.
Palabras Clave: Diferencial de temperatura, eficiencia térmica, periodo de cosecha para café.
Abstract
In process to obtain dry coffee from cherry coffee, drying is a fundamental stage. Since the moisture content of the washed coffee must be reduced (48 to 56% on a wet basis) to a range that oscillates between 10 and 12 % humidity, appropriate levels to inhibit the formation of fungi and prevent grain from suffering damage to its physical appearance and chemical composition. For evaluation, a passive type direct semi-parabolic solar dryer was used, where total cover is considered as collector. The maximum temperature difference between interior of dryer and environment was 10 °C. The thermal efficiency of dryer per month in relation to harvest season, and was 11 % average for season. The results show that dryer is suitable for obtaining dry parchment coffee at the level of small producers.
Keywords: Harvest period for coffee, temperature differential, thermal efficiency.
Texto completo:
653-662 PDFReferencias
Almuhanna E. A. (2012). Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the eastern province of Saudi Arabia. Part I: Thermal performance analysis of a solar dryer. Journal of Agricultural Science 4(3): 237-246.
Chavan B. R.; A. Yakupitiyage and S. Kumar. (2001). Drying Performance, Quality Characteristics, and Financial Evaluation of Indian Mackerel (Rastrilliger Kangurta) Dried by a Solar Tunnel Dryer. Thammasat Int. J. Sc. Tech 16(2):11-25.
Desa W. N. Y. M., A. Fudholi and Z. Yaakob. (2020). Energy-economic-environmental analysis of solar drying system: a review. International Journal of Power Electronics and Drive System 11(2):1011-1018.
Hii C. L., Ong S. P., Chiang C. L. and Menon A. S. (2019). A review of quality characteristics of solar dried food crop producst. IOP Conf. Series: Earth and Environmental Science 292 (2019) 012054 doi:10.1088/1755-315/292/1/01205.
Jambhulkar A. C., V. B. Pawar, S. B. Pawar, A. S. Dharwadkar, P. S. Pandure and S. P. Gadewar. (2017). Solar drying techniques and performance analysis: A review. IOSR Journal of Mechanical and Civil Engineering 6:35-29.
Jurado C., J. M.; Montoya R., E. C.; Oliveros T., C. E. y García A., J. 2009. Método para medir el contenido de humedad del café pergamino en el secado solar del café. Cenicafé 60(2):135-147.
Kamarulzaman A., M. Hasanuzzaman and N. A. Rahim. (2021). Global advancement of solar drying technologies and its future prospects: A review. Solar Energy 221:559–582.
Keke M., M.; A. Femi S.; S. Kayode A. and I. Abimbola A. (2014). Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa. Journal of Fisheries 2(1):64-69.
Menya, E. and Komakech, A. J. (2013). Investigating the effect of different loading densities on selected properties of dried coffee using a GHE dryer. Agric Eng Int: CIGR J. 15(3):231-237.
Monrudee, B. M.; Lertsatitthanakorn, C.; Wiset, L. and Poomsaad, N. (2011). Performance analysis and economic evaluation of a greenhouse dryer for pork drying. KKU Eng. J. 38(4):433-442.
Montero P., I. (2005). Modelado y construcción de un secadero solar híbrido para residuos biomásicos. Tesis doctoral. Escuela de Ingenierías Industriales. Universidad de Extremadura. Badajoz. España. 262 p.
Parra-Coronado A., G. Roa-Mejía y C. E. Oliveros-Tascón. (2008). SECAFÉ Parte II: Recomendaciones para el manejo eficiente de los secadores mécanicos de café pergamino. Revista Brasileira de Engenharia Agrícola e Ambiental 12(4):428–434.
Quintanar O. J. (2016) Secado solar. In: Unistmo. Alternativas energéticas. Universidad del Istmo. Tehuantepec, Oaxaca, Méx.
Rajeshwari N. and A. Ramalingam. (2012). Low cost material used to construct effective box type solar dryer. Archives of Applied Science Research, 4 (3):1476-1482.
Restrepo V., A. H. y J. C. Burbano J. (2005). Disponibilidad térmica solar y su aplicación en el secado de granos. Scientia Et Technica 11(27):127-132.
Sandali M, A. Boubekri and D. Mennouche. (2019). Improvement of the thermal performance of solar drying systems using different techniques: a review. Journal Solar Energy Engineering 141(5):050802 (11 pages).
Sharma A., O. Chatta and A. Gupta. (2018). A review of solar energy use in drying. International Journal of Engineering Technology Science and Research 5(3):351-358.
Shimpy, H. Manchanda, M. Kumar and M. Gupta. (2019). Recent developments and comprehensive review on greenhouse dryers. Proceedings of the National Conference on Trends and Advances in Mechanical Engineering (TAME 2019). Faridabad. India. Pp. 23-31.
Singh, P. and M. K. Gaur. (2020). Environmental and economic analysis of hybrid greenhouse solar dryer: A Review. International Journal of Energy Technology 2(1):55-69.
Singh S., M. Singh and V. S. Han. (2018). Development of multi product solar dryer and its evaluation for fenugreek leave. Chemical Science Review and Letters 7(25):128-134.
Sistema de Información Agroalimentaria y Pecuaria (SIAP). 2022. Escenario mensual de productos agroalimentarios, Café cereza. https://www.gob.mx/cms/uploads/attachment/file/759464/Caf_Agosto_2022.pdf
Sreekumar A. (2013). Evaluation of a roof-integrated solar air heating system for drying foodstuffs. International Journal of Emerging Technology and Advanced Engineering 3(3):209-213.
Subramaniyan C., K. B. Prakash, B. Kalidasan, N. Bhuvanesh and A. Amarkarthik. (2021). Exergy analysis on performance of groundnut solar dryer with forced convection. IOP Conf. Series: Materials Science and Engineering 1059 (2021) 012056 doi:10.1088/1757-899X/1059/1/012056
Tiwari, A. (2016). A review on solar drying of agricultural produce. Journal of Food Processing & Technology 7(9):1-12.
Tiwaria G.; V. K. Katiyara; V. Dwivedia; A. K. Katiyarb and C. K. Pandeyb. (2013). A comparative study of commonly used solar dryers in India. International Journal of Current Engineering and Technology 3(3): 994-999.
Upadhyay, N. and A. Singh. 2017. Experimental performance of solar greenhouse dryer for drying vegetables & fruits – a review. Journal of Emerging Technologies and Innovative Research 4(8):153-156.
Yelmen B., M. T. Çakir and H. H. Şahin. (2019). Performance evaluation of greenhouse type dryers for red pepper: technical and economic aspect. Advances in Research 20(2): 1-13.
Yoo J. Y., H. J. Kim., E. J. Woo and C. J. Park. (2017). On solar energy utilization for drying technology. International Journal of Environmental Science and Development 8(4):305-311.
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx