ALGORITMO SEGUIDOR DE MÁXIMA POTENCIA BASADO EN DIFERENCIACIÓN DE TRANSITORIOS PARA APLICACIONES FOTOVOLTAICAS (MAXIMUM POWER POINT TRACKING ALGORITHM BASED ON TRANSIENT DIFFERENTIATION FOR PHOTOVOLTAIC APPLICATIONS)
Resumen
Este artículo presenta un algoritmo de búsqueda de máxima potencia (MPPT) que utiliza estados transitorios a fin de prevenir problemas de deriva y reducir las oscilaciones en estado estacionario. El algoritmo propuesto está basado en el tradicional Perturbar y Observar (P&O) con una fase de medición adicional que se realiza durante el punto de máximo sobretiro después de la fase de perturbación. Mediante la comparación de las diferenciales de potencia, el algoritmo puede identificar si la perturbación anterior se realizó en la dirección correcta. La validación del funcionamiento se realizó mediante simulaciones utilizando un perfil de irradiación basado en el estándar EN 50530 acelerado con un factor de 100x. El algoritmo propuesto alcanzó una eficiencia global de 99.74% en comparación con el 97.4% que alcanzó el P&O bajo las condiciones probadas.
Palabras Clave: MPPT, Fotovoltaico, Plataforma de pruebas.
Abstract
This article presents a maximum power point tracking algorithm (MPPT) that measures transitory states to prevent drift and steady-state oscillation issues. The proposed algorithm is based on the traditional Perturb and Observe (P&O), with an additional measuring stage performed during the maximum overshoot point right after the perturbing phase. By comparing power differentials, the proposed algorithm can identify whether the previous perturbation was performed in the correct direction. The operation validation was made through simulations using an irradiance profile based on the EN50530 standard accelerated by a 100x factor. The proposed algorithm reached a global efficiency of 99.74% compared with the 97.4% of the classical P&O.
Keywords: MPPT, Photovoltaic, Test-platform.
Texto completo:
693-711 PDFReferencias
Ahmad, R., Murtaza, A. F., & Ahmed, H. (2019). Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review. Renewable and Sustainable Energy Reviews, 101(October 2018), 82–102. https://doi.org/10.1016/j.rser.2018.10.015
Ahmed, J., & Salam, Z. (2015). An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 150, 97–108. https://doi.org/10.1016/j.apenergy.2015.04.006
Ahmed, J., & Salam, Z. (2018). An Enhanced Adaptive P&O MPPT for Fast and Efficient Tracking Under Varying Environmental Conditions. IEEE Transactions on Sustainable Energy, 9(3), 1487–1496. https://doi.org/10.1109/TSTE.2018.2791968
Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., Dallemand, J. F., & Parra, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. https://doi.org/10.1016/j.rser.2014.01.004
Ali, A., Almutairi, K., Padmanaban, S., Tirth, V., Algarni, S., Irshad, K., Islam, S., Zahir, M. H., Shafiullah, M., & Malik, M. Z. (2020). Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection. IEEE Access, 8, 127368–127392. https://doi.org/10.1109/ACCESS.2020.3007710
Bhattacharyya, S., Kumar P, D. S., Samanta, S., & Mishra, S. (2021). Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms. IEEE Transactions on Sustainable Energy, 12(1), 293–302. https://doi.org/10.1109/TSTE.2020.2991768
Bollipo, R. B., Mikkili, S., & Bonthagorla, P. K. (2021). Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE Journal of Power and Energy Systems, 7(1), 9–33. https://doi.org/10.17775/CSEEJPES.2019.02720
CENELEC, E. C. for E. S. (2010). European Standard EN 50530. Overall efficiency of grid connected photovoltaic inverters.
Elgendy, M. A., Zahawi, B., & Atkinson, D. J. (2012). Evaluation of perturb and observe MPPT algorithm implementation techniques. IET Conference Publications, 2012(592 CP), 21–33. https://doi.org/10.1049/cp.2012.0156
Escobar, G., Pettersson, S., Ho, C. N. M., & Rico-Camacho, R. (2017). Multisampling Maximum Power Point Tracker (MS-MPPT) to Compensate Irradiance and Temperature Changes. IEEE Transactions on Sustainable Energy, 8(3), 1096–1105. https://doi.org/10.1109/TSTE.2017.2654965
Kandemir, E., Cetin, N. S., & Borekci, S. (2017). A comprehensive overview of maximum power extraction methods for PV systems. Renewable and Sustainable Energy Reviews, 78(December 2016), 93–112. https://doi.org/10.1016/j.rser.2017.04.090
Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(September 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132
Killi, M., & Samanta, S. (2015). Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Transactions on Industrial Electronics, 62(9), 5549–5559. https://doi.org/10.1109/TIE.2015.2407854
Kivimaki, J., Kolesnik, S., Sitbon, M., Suntio, T., & Kuperman, A. (2017). Revisited Perturbation Frequency Design Guideline for Direct Fixed-Step Maximum Power Point Tracking Algorithms. IEEE Transactions on Industrial Electronics, 64(6), 4601–4609. https://doi.org/10.1109/TIE.2017.2674589
Kumar, V., Ghosh, S., Naidu, N. K. S., Kamal, S., Saket, R. K., & Nagar, S. K. (2021). Load voltage-based MPPT technique for standalone PV systems using adaptive step. International Journal of Electrical Power & Energy Systems, 128, 106732. https://doi.org/10.1016/j.ijepes.2020.106732
Li, S., Ping, A., Liu, Y., Ma, X., & Li, C. (2020). A variable-weather-parameter MPPT method based on a defined characteristic resistance of photovoltaic cell. Solar Energy, 199(September 2019), 673–684. https://doi.org/10.1016/j.solener.2020.02.065
Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L., & Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports, 6, 1312–1327. https://doi.org/10.1016/j.egyr.2020.05.013
Motahhir, S., El Hammoumi, A., & El Ghzizal, A. (2020). The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. Journal of Cleaner Production, 246. https://doi.org/10.1016/j.jclepro.2019.118983
Padmanaban, S., Priyadarshi, N., Bhaskar, M. S., Holm-Nielsen, J. B., Ramachandaramurthy, V. K., & Hossain, E. (2019). A Hybrid ANFIS-ABC Based MPPT Controller for PV System with Anti-Islanding Grid Protection: Experimental Realization. IEEE Access, 7, 103377–103389. https://doi.org/10.1109/ACCESS.2019.2931547
Pandey, A., Dasgupta, N., & Mukerjee, A. K. (2008). High-performance algorithms for drift avoidance and fast tracking in solar MPPT system. IEEE Transactions on Energy Conversion, 23(2), 681–689. https://doi.org/10.1109/TEC.2007.914201
Piegari, L., & Rizzo, R. (2010). Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renewable Power Generation, 4(4), 317–328. https://doi.org/10.1049/iet-rpg.2009.0006
Ram, J. P., Pillai, D. S., Rajasekar, N., & Strachan, S. M. (2020). Detection and Identification of Global Maximum Power Point Operation in Solar PV Applications Using a Hybrid ELPSO-PO Tracking Technique. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 1361–1374. https://doi.org/10.1109/JESTPE.2019.2900999
Rico-camacho, R. I., Ricalde, L. J., Bassam, A., Flota-bañuelos, M. I., & Alanis, A. Y. (2022). Transient Differentiation Maximum Power Point Tracker ( Td-MPPT ) for Optimized Tracking under Very Fast-Changing Irradiance : A Theoretical Approach for Mobile PV Applications applied sciences Transient Differentiation Maximum Power Point Tracker ( Td-MP. March. https://doi.org/10.3390/app12052671
Sera, D., Teodorescu, R., Hantschel, J., & Knoll, M. (2008). Optimized Maximum Power Point Tracker for fast changing environmental conditions. 2008 IEEE International Symposium on Industrial Electronics, 2401–2407. https://doi.org/10.1109/ISIE.2008.4677275
Sher, H. A., Murtaza, A. F., Noman, A., Addoweesh, K. E., Al-Haddad, K., & Chiaberge, M. (2015). A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT. IEEE Transactions on Sustainable Energy, 6(4), 1426–1434. https://doi.org/10.1109/TSTE.2015.2438781
Subudhi, B., & Pradhan, R. (2013). A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy, 4(1), 89–98. https://doi.org/10.1109/TSTE.2012.2202294
Viinamäki, J., Jokipii, J., Messo, T., Suntio, T., Sitbon, M., & Kuperman, A. (2015). Comprehensive dynamic analysis of photovoltaic generator interfacing DC-DC boost power stage. IET Renewable Power Generation, 9(4), 306–314. https://doi.org/10.1049/iet-rpg.2014.0149
Zhang, F., Thanapalan, K., Procter, A., Carr, S., & Maddy, J. (2013). Adaptive hybrid maximum power point tracking method for a photovoltaic system. IEEE Transactions on Energy Conversion, 28(2), 353–360. https://doi.org/10.1109/TEC.2013.2255292
URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es
Pistas Educativas está bajo la Licencia Creative Commons Atribución 3.0 No portada.
TECNOLÓGICO NACIONAL DE MÉXICO / INSTITUTO TECNOLÓGICO DE CELAYA
Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México
Tel. 461 61 17575 Ext 5450 y 5146
pistaseducativas@itcelaya.edu.mx